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Abstract: The present paper deals with exact solutions for the free vibration characteristics of thin 
circular plates elastically restrained against translation and resting on Winkler-type elastic foundation 
based on the classical plate theory. Parametric investigations are carried out for estimating the 
influence of edge restraint against translation and stiffness of the elastic foundation on the natural 
frequencies of circular plates. The elastic edge restraint against translation and the presence of elastic 
foundation has been found to have a profound influence on vibration characteristics of the circular 
plate undergoing free transverse vibrations.  Computations are carried out for natural frequencies of 
vibrations for varying values of translational stiffness ratio and stiffness parameter of Winkler-type 
foundation. Results are presented for twelve modes of vibration both in tabular and graphical form for 
use in design. Extensive data is tabulated so that pertinent conclusions can be arrived at on the 
influence of translational edge restraint and the foundation stiffness ratio of the Winkler foundation 
on the natural frequencies of uniform isotropic circular plates. 
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اعدة اھتزازات الألواح الدائریة ذات الحافة المقیدة المرنة مقابل الانتقال والسكون على ق
 مرنة

 بوشیلابیلا كامیسواره راو، ∗أ،وكافرابو بھاسكارا راول

 

تتناول ھذه الورقة الحلول الدقیقة لخصائص الاھتزاز الحر لألواح دائریة رقیقة مرنة ومقیدة مقابل الانتقال  :الملخص
والسكون على قاعدة مرنة من نوع وینكلر بالاعتماد على نظریة اللوح التقلیدیة. وتم إجراء استقصاء بارامتري من أجل 

لقاعدة مرنة على الترددات الطبیعیة لألواح دائریة. وتبین أن حافة المرونة  تقدیر تأثیر حافة مقیدة مقابل الانتقال والصلابة
المقیدة مقابل الانتقال وبوجود القاعدة المرنة لھا تأثیر شدید على خصائص اھتزاز اللوح الدائري الخاضع الى اھتزازات 

تنوعة من نسبة الصلابة الانتقالیة ومتغیر عرضیة حرة. تم إجراء العملیات الحسابیة للترددات الطبیعیة للاھتزازات لقیم م
الصلابة لقاعدة نوع وینكلر. وقد تم عرض النتائج لأثنى عشر طریقة للاھتزاز سویاً على شكل جداول ورسوم بیانیة وذلك 
لاستخدامھا في التصمیم. وتم جدولة بیانات واسعة النطاق بحیث أن الاستنتاجات ذات الصلة منھا یمكن التوصل الیھا 

معرفة تأثیر الحافة المقیدة الانتقالیة ونسبة الصلابة لقاعدة نوع وینكلر على الترددات الطبیعیة للألواح الدائریة ذات ل
 الخواص الموحدة.
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Nomenclature 

 

h   Thickness of a plate 

a  Radius of a plate 

ν   Poisson’s ratio 

E   Young’s modulus  

ρ   Density of a material 

),( θrW  Transverse deflection of the plate 

D   Flexural rigidity of a plate 

TK   Translational spring stiffness 

wK   Stiffness of Winkler foundation  

T   Translational spring stiffness ratio 

ξ   Foundation stiffness ratio 

mnω   Is the natural frequency of vibrations 

mnλ   Eigenvalue without foundation 

*
mnλ   Eigenvalue with Winkler foundation 

nm,  Positive integers corresponding to the number of concentric circles and nodal 
diameters in each flexural mode 

 
 



Vibrations of Circular Plates with Elastically Restrained Edge against Translation and Resting on Elastic Foundation 
 

189 
 

1. Introduction 
 
Circular plates resting on elastic foundation 
have wide range of application in the static and 
dynamic design of linear/nonlinear vibration 
absorbers, dynamic exciters, telephone receiver 
diaphragms, computer discs, printed circuit 
boards etc. (Leissa 1969). Due to the essential 
use of vibration data in the computation of 
stresses in such structures, reliable prediction of 
vibration data is of great importance. In view of 
its importance in engineering design, the 
problem of vibration of circular plates on elastic 
foundation has attracted the focus and attention 
of many researchers. 
     Some of the recent studies have reestablished 
the efficiency of the classical approach in 
analyzing the vibrations of variety of structures. 
Circular plate problems allow for significant 
simplification in view of their symmetry but still 
many difficulties arise when the boundary 
conditions of the plate become complex 
involving linear and rotational restraints. A 
recent survey of literature shows that very few 
studies exist on the study of circular plates 
resting on elastic foundation. Wang and Wang 
(2003), who observed the switching between 
axisymmetric and asymmetric vibration modes, 
recently investigated the effect of internal elastic 
translational supports.  
     The vibration characteristics of plates resting 
on an elastic medium are different from those of 
the plates supported only on the boundary. 
Leissa (1993) discussed the vibration of a plate 
supported laterally by an elastic foundation. 
Leissa deduced that the effect of Winkler 
foundation merely increases the square of the 
natural frequency of the plate by a constant. 
Salari et al. (1987) speculated the same 
conclusion.  Ascione and Grimaldi (1984) 
studied unilateral frictionless contact between a 
circular plate and a Winkler foundation using a 
vibrational formulation. Leissa (1969), who 
tabulated a frequency parameter for four 
vibration modes of simply supported circular 
plate with varying rotational stiffness, presented 
one of the earliest formulations of this problem. 
Kang and Kim (1996) presented an extensive 
review of the modal properties of the elastically 
restrained beams and plates.  
     Zheng and Zhou (1988) studied the large 
deflection of a circular plate resting on Winkler 
foundation. Ghosh (1997) studied the free and 
forced vibration of circular plates on Winkler 
foundation by exact analytical method. Chang 

and Wickert (2001), Kim et al.  (2000) and Tseng 
and Wickert (1994) studied the dynamic 
characteristics of bolted flange connections 
involving circular plates displaying beating type 
of repeat frequencies and typical mode shapes 
of vibration. Bolted flange connections are 
practically the best examples for the elastically 
restrained boundary conditions of circular 
plates on partial or continuous Winkler type 
elastic foundation. 
     The most general soil model used in practical 
applications is the Winkler (1867) model in 
which the elastic medium below a structure is 
represented by a system of identical but 
mutually independent elastic linear springs. 
Recent investigations have reiterated the 
efficiency of the classical approach (Soedel 1993) 

in analyzing the behavior of structures under 
vibrations. There are other papers (Weisman 
1970; Dempsey et al. 1984; Celep 1988) dealing 
with the study of plates on a Winkler 
foundation. In general, papers dealing with 
vibrating plates, shells and beams are concerned 
with the determination of eigenvalues and 
mode shapes (Leissa 1969).  
     A good number of studies are made by 
investigators (Wang and Lin 1996; Kim et al. 
2001; Yayli et al. 2014) using the method of 
Fourier series for estimating the frequencies of 
beams with generally restrained end conditions 
including the effect of elastic soil foundation. 
The method includes use of Stoke’s 
transformation in suitably modifying the 
complex boundary conditions. Very much 
similar to the dynamic stiffness matrix 
approach, the elements of the matrix involving 
infinite Fourier series are explicitly obtained in 
these studies. The determinant of this matrix for 
each case considered leads to the frequency 
equation and the same can be solved using well 
known numerical methods. The results obtained 
for various elastically restrained beam cases in 
these studies tallied well with those available in 
the literature establishing the efficiency of this 
method. 
     In view of the necessity of using complex 
combinations of rotational and translational 
springs at the boundary of the circular plate to 
suitably simulate the practical non-classical 
boundary connections being adopted in a wide 
range of industrial applications (Bhaskara and 
Kameswara 2009; Bhaskara and Kameswara  
2010; Lokavarapu and Chellapilla 2013), the use 
of exact method of solution becomes imperative 
and hence the same is adopted in this paper. 
Even though the method adopted here is 
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classical, the particular case of vibration of 
elastically restrained circular plate resting on 
elastic foundation considered here is not dealt 
with in the available literature.  
     Utilizing the classical plate theory, this paper 
deals with exact method of solution for the 
analysis of free transverse vibrations of thin 
circular plate that is elastically restrained 
against translation and resting on Winkler-type 
elastic foundation. For estimating the influence 
of edge restraint against translation and stiffness 
of the elastic foundation on the natural 
frequencies of circular plates, parametric 
investigations are carried out varying the values 
of elastic edge restraint stiffness against 
translation and the stiffness of the elastic 
foundation. The results obtained on natural 
frequencies of vibration clearly show that the 
vibration characteristics of the circular plate 
undergoing free transverse vibrations are found 
to have been profoundly influenced by these 
variations. Computations are carried out for 
natural frequencies of vibrations for varying 
values of translational stiffness ratio and 
stiffness parameter of Winkler-type foundation. 
Results presented for twelve modes of vibration 
both in tabular and graphical form are believed 
to be quite useful for designers in this area. 
 
2. Mathematical formulation of the 

System 
 
The considered elastic thin circular plate is 
supported on a Winkler foundation as shown in 
Fig. 1. In the classical plate theory (Leissa 1969), 

the following fourth order differential equation 
describes free flexural vibrations of a thin 
circular uniform plate. 

0/),,(),,(. 224 =∂∂+∇ ttrwhtrwD θρθ      (1)  
 

 
Figure 1.  A thin circular plate with translational 
elastic edge restraint and supported on elastic 
foundation. 

where )1(12/ 23 ν−= EhD  is the flexural rigidity 
of a plate and νρ ,,,, Eha  are the plate’s 

radiuses, thickness, density, Young’s modulus 
and Poisson ratio respectively. 
     The homogeneous equation for Kirchhoff’s 
plate on one parameter elastic foundation is 
given by the following equation. 
 

++∇ ),,(),,(. 4 trwKtrwD w θθ            (2) 
22 /),,( ttrwh ∂∂ θρ =0  

 
     Displacement in equation (2) can be 
presented as a combination of spatial and time 
dependent components as follows;  
 
Let tierWtrw ωθθ ),(),,( =                                     (3) 

Now substitute the Eq. (3) in Eq. (2) 

0),().(),(. 24 =−+∇ θωρθ rWhKrWD w                             (4) 

     The solution of the equation takes the 
following form 
 

                  where3, 2, 1, 0,=  ;…3 2, 1, 0,= cos.
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where Amn and Cmn are constants, nJ is Bessel 
function of the first kind of first order and nI  is 
modified Bessel function of the first kind of first 
order. Considering an elastically supported 
plate as shown in Fig. 1, boundary conditions 
can be formulated at ar = , in terms of 
translational stiffness ( TK ) as follows: 

0),( =θaM r                           (6) 
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where the Kelvin-Kirchhoff and bending 
moment are defined as follows 
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     By applying Eqs. (6) and (8), we obtain the 
following equation 
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     From Eqs. (5) and (10), we derive the 
following equation 
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where mnP = )()( 11 mnnmnn JJ λλ −+ − ;

)()( 22 mnnmnnmn JJQ λλ −+ += ; 

)()( 11 mnnmnnmn IIS λλ −+ += ; 

)()( 22 mnnmnnmn IIT λλ −+ += ; 
 
     From Eqs. (7) and (9), we get the following 
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     From Eqs. (5) and (12), we derived the 
following equation 
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where, 
D
KaT T

3

=  

)()( 11 mnnmnnmn JJP λλ −+ −=  ; )()( 22 mnnmnnmn JJQ λλ −+ += ; )()( 33 mnnmnnmn JJR λλ −+ −= ; 

)()( 11 mnnmnnmn IIS λλ −+ +=  ; )()( 22 mnnmnnmn IIT λλ −+ += ; )()( 33 mnnmnnmn IIU λλ −+ += ; 
 
 
     If ∞→TK  then this case becomes simply 
supported boundary condition as shown in Fig. 
2. The frequency equation can be calculated 
from Eqs. (11) and (13), which allows 
determining eigenvalues mnλ . The mode shape 
parameters mnC  can be determined 
corresponding to these eigenvalues by using 
either Eq. (11) or Eq. (13). The amplitude of each 
vibration mode in Eq. (5) is set by the 
normalization constant mnA determined from 
the following condition. 
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where, mnM is a mass of the plate, 1== nqmp δδ  if 

qnpm == ,  and nqmpδδ = 0 if m ≠ p or n≠ .q  
     The normalization constant mnA can be 
derived using Eqs. (5) and (14) as given below: 
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          In Eq (4), mnω  is  the  natural  frequency of  
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     It is clear from the Eq. (16) the natural 
frequency of vibrations is dependent on the 
plate radius and eigenvalues. 
     From Eq. (16) we can express 
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244* ξλλ += mnmn                                               (18) 

where 
D
aK w

4
2 =ξ                                       (19) 

[ ]4
1

24* ξλλ += mnmn                                      (20) 
 
where mnλ  is eigenvalue without foundation 

and *
mnλ  is eigenvalue with Winkler’s 

foundation. 
 
3. Solution 
 
Using Matlab programming, computer software 
with symbolic capabilities, solves the above set 
of equations. The program determines 
eigenvalues ( *

mnλ ), for a given range of 
boundary conditions. The boundary linear 
translational non-dimensional restraint 
parameter can be defined as follows: 
 

D
aKT T

3

=                                          (21)  

D
aK w

4
2 =ξ                                                    (22) 

 
     The following are the input parameters to the 
program; (i) Translational stiffness ratio ( T ) (ii) 
Foundation ratio (ξ ) (iii) Poisson ratio (ν ) (iv) 
Upper bound for eigenvalues (N) (v) Suggested 
for eigenvalues (d) (vi) Number of mode shape 
parameters (n). The   program finds eigenvalues 

*
mnλ  by using Matlab root finding function.  

4. Results and Discussion 
 
The code developed is used to determine 
eigenvalues of any set or range of translational 
and foundation constraints. This code also 
implanted for various plate materials by 
adjusting Poisson ratio. Such a wide range of 
results is not available in the literature yet. The 
eigenvalues for the plate edge, which is 
elastically restrained against translation and 
fully resting on the elastic foundation, at various 
values of the translational stiffness ratios, are 
computed and the results are given in Table 1. 
The effects of the translational stiffness ratios 
are plotted in Fig. 3. As seen from Fig. 3, 
eigenvalues increases with an increment in the 
translational stiffness ratio, and the plates 
become unstable in the region when the 

translational stiffness ratio exceeds a certain 
value. Twelve vibration modes are presented in 
Fig. 3. The smoothened stepped variation is 
observed in Fig. 3. The stepped region increases 
with increase in translational stiffness ratio and 
vibration modes. The location of the stepped 
region with respect to T  changed gradually 
from the range of 0.01526 † [9.9997] ‡ – 5587.5316 
[10.] to 16.62296 [14.6739] – 611824.96917 
[16.75055].  
     The simply supported boundary conditions 
(Fig. 2) could be accounted for by setting (

∞→TK ) shown in Fig.1. The translational 
edge supports becomes simply supported (or 
hinged) for very high values (close to infinity) of 
translational stiffness parameter i.e. ∞→TK . 
The frequency in this case is 2.23175 and this is 
in good agreement with the results published by 
Wang (2005). Another result considered for 
comparison is from Rao and Rao (2009) on 
study of the case of vibrations of elastically 
restrained circular plates supported on partial 
Winkler foundation. When the support position 
is full span which means that when b = 1, the 
case becomes a circular plate having full 
foundation support with elastically restrained 
edge against translation. For this case, the 
frequency is 2.1834 which is in good agreement 
with the frequency of 2.18341 obtained from the 
present study. Here †.represents translational 
stiffness ratio and ‡  represents Eigen values 
throughout the text.  
     The eigenvalues at various values of the 
foundation stiffness ratios [ ]33.0&100 == νT  
are computed and the results are given in Table 
2. The effects of the foundation stiffness ratio on 
eigenvalues are plotted in Fig. 4. As seen from 
Fig. 4, the eigenvalue increases with increase in 
the foundation stiffness ratio, and the plate 
becomes stiffer and stronger as the value of 
foundation stiffness becomes greater than 102.  
As seen from the Tables 1 and 2, the influence of 
foundation stiffness ratio on eigenvalue is 
relatively greater than the translation stiffness 
ratio in increasing the overall natural 
frequencies of the plate support system. As seen 
from Fig. 4, for all the modes considered here, 
up to a value of 10 the eigenvalues stay constant 
and beyond this value all the curves tend to 
converge to a constant eigenvalue as the 
foundation stiffness ratio increases up to 103. 
The convergence starts from 1.07897 [2.0325779] 
and continues up to a constant value of 9.63274 
[13.84796].
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Table 1.  Eigenvalues for different Translational stiffness ratio for ξ =100 and ν =0.33. 

 
Table 2. Eigenvalues for different Foundation stiffness ratio for T =100 and ν =0.33. 

 
 

 

 

Figure 2.  A simply supported thin circular plate resting on elastic foundation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Effect of translational stiffness ratio ξ on eigenvalues, λmn. 
 

Log10(T) λ00 λ10 λ20 λ01 λ11 λ21 λ02 λ12 λ22 λ03 λ13 λ23 

-3 10 10.0205 10.3517 10.10358 10.79568 12.46774 10.29701 11.43857 13.52984 10.63672 12.2505 14.67332 

-2 10 10.02051 10.35171 10.10359 10.79568 12.46775 10.29702 11.43857 13.52985 10.63673 12.25051 14.67332 

-1 10.00005 10.02061 10.3518 10.10368 10.79576 12.46779 10.29711 11.43864 13.52989 10.63682 12.25056 14.67335 

0 10.00047 10.02162 10.35263 10.10462 10.79649 12.46827 10.29803 11.43927 13.53026 10.63769 12.25109 14.67365 

1 10.003 10.03287 10.36125 10.11468 10.804 12.47302 10.30745 11.44568 13.53403 10.64649 12.25645 14.67667 

2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5759 13.57333 10.74585 12.31326 14.70772 

3 10.00614 10.203 11.00421 10.49407 11.61576 13.1793 10.91134 12.27823 14.08459 11.41839 12.99719 15.0966 

4 10.00619 10.21322 11.14468 10.53794 11.94459 14.15323 11.03916 12.88272 15.33948 11.70347 13.90786 16.53545 

5 10.00619 10.21423 11.15725 10.54212 11.97273 14.2438 11.05093 12.93527 15.47979 11.72934 13.99516 16.74092 

6 10.00619 10.21433 11.15849 10.54254 11.97546 14.25215 11.05209 12.94027 15.49231 11.73186 14.00329 16.75866 

12 10.00619 10.21434 11.15862 10.54258 11.97576 14.25307 11.05222 12.94082 15.49369 11.73214 14.00418 16.7606 

Log10(ξ) λ00 λ10  λ20 λ01  λ11 λ21  λ02  λ12 λ22 λ03 λ13 λ23 

-3 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197 6.50356 9.33292 12.43922 7.59879 10.67534 13.84974 

-2 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197 6.50356 9.33292 12.43922 7.59879 10.67534 13.84973 

-1 2.18365 4.70077 6.69704 5.56684 7.98679 10.99197 6.50357 9.33292 12.43922 7.59879 10.67535 13.84974 

0 2.20704 4.70315 6.69786 5.56827 7.98727 10.99216 6.50447 9.33323 12.43935 7.59936 10.67555 13.84983 

1 3.3284 4.92488 6.77875 5.7064 8.03541 11.01074 6.5926 9.36352 12.45218 7.65514 10.69583 13.84914 

2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5159 13.57333 10.74585 12.31326 14.70772 

3 31.62296 31.62664 31.63867 31.63037 31.6549 31.73756 31.63691 31.68259 31.81038 31.6491 31.72496 31.90972 
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Figure 4.  Effect of Foundation stiffness ratio, ξ on eigenvalues, λmn. 
 

 
Figure 5.  Effect of translational, T  and foundation, ξ stiffness ratio son eigenvalues, λmn.   
 
     The eigenvalues at various values of the 
translational stiffness ratios and foundation 
stiffness ratios are computed and the results are 
given in Table 3. The effects of the translation 
and foundation stiffness ratios on eigenvalues 
are clearly observed in Fig. 5, eigenvalues 
increases with an increment in both the 
translational and foundation stiffness ratios. As 
observed from the Table 1 and 3, the influence 
of foundation stiffness ratio on eigenvalue is 
more predominant than that of translation 
stiffness ratio alone. As observed from Table 1, 2 
and 3, in Table 3, lower eigenvalues are 
recorded for lower values of foundation and 
translation stiffness ratios together.  As seen 
from Fig. 5, all the curves are stable up to certain 
region and beyond this all the curves tend to 
converge as the value of translation and 
foundation stiffness ratios increases. 

     The eigenvalues for different plate materials 
and various values of translational, foundation 
stiffness ratios are computed, and the results are 
given in Table 4. It was observed that for highξ , 
eigenvalues are independent of Poisson ratio, as 
shown in Fig. 6. In addition, it was observed 
that for any value of T, eigenvalues are 
independent on Poisson ratio.  
 
5. Conclusion 
 
This paper deals with a method of computation 
of eigenvalues of axi-symmetric flexural 
vibrations of a circular plate with translational 
edge supports and resting on Winkler 
foundation using a specifically written 
MATLAB code. In this paper, the computed 
numerical results are presented in a tabular 
format  to  enable  an  estimating the accuracy of 
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Table 4.  Eigenvalues for different Poisson ratios. 
 

ν 1000== ξT  10,100 == ξT  1000,10 == ξT  10,1 == ξT  50,50 == ξT  

0 31.62925 4.92456 10.03027 3.62553 7.28924 

0.1 31.62929 4.92466 10.03111 3.64904 7.2896 

0.2 31.62934 4.92476 10.0319 3.6708 7.28993 

0.3 31.62938 4.92485 10.03265 3.69097 7.29025 

0.4 31.62942 4.92494 10.03336 3.70974 7.29056 

0.5 31.62946 4.92503 10.03404 3.72725 7.29085 

 
Figure 6.  Effect of Poisson ratio, ν on eigenvalues, λmn. 
 
approximate methods being used by other 
researchers for solving such problems. Two-
dimensional plots of eigenvalues are drawn for 
a wide range of translational and foundation 
stiffness ratios facilitating their use in design. It 
has been observed that the eigenvalues remain 
constant without change only in a limited range 
of constraints (0 to 10) specific to each vibration 
mode and then steeply increase with increasing 
values of foundation ultimately converging to a 
constant value. It is also observed that the 
influence of foundation stiffness ratio on 
eigenvalues is more predominant than that of 
translational stiffness ratio. The effects of 
various parameters such as translational 
stiffness, foundation stiffness and Poisson ratio  
 
 

 
parameters on natural frequencies of the plate 
with elastic edge and resting on elastic 
foundation are studied in detail.  
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