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Abstract: The present paper deals with exact solutions for the free vibration characteristics of thin
circular plates resting on Winkler-type elastic foundation based on the classical plate theory
elastically restrained against translation. Parametric investigations are carried out for estimating the
influence of edge restraint against translation and stiffness of the elastic foundation on the natural
frequencies of circular plates. The elastic edge restraint against translation and the presence of elastic
foundation has been found to have a profound influence on vibration characteristics of the circular
plate undergoing free transverse vibrations. Computations are carried out for natural frequencies of
vibrations for varying values of translational stiffness ratio and stiffness parameter of Winkler-type
foundation. Results are presented for twelve modes of vibration both in tabular and graphical form
for use in the design. Extensive data is tabulated so that pertinent conclusions can be arrived at on the
influence of translational edge restraint and the foundation stiffness ratio of the Winkler foundation
on the natural frequencies of uniform isotropic circular plates.
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Nomenclature
h Thickness of a plate, mm
a Radius of a plate, mm
14 Poisson’s ratio
Young’s modulus, N/ mm?
o Density of a material, kg/mm3
W (r,0) Transverse deflection of the plate, mm
D Flexural rigidity of a plate, N.mm?2
K, Translational spring stiffness, N/mm
K, Stiffness of Winkler foundation, N/mm2/mm
T Translational spring stiffness ratio
& Foundation stiffness ratio
Opn Natural frequency, rad/sec
Aen Eigenvalue without foundation, cycles/sec
A Eigenvalue with Winkler foundation, cycles/sec M, N positive integers correspond-

mn

ing to the number of concentric circles and nodal diameters in each flexural mode.
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Vibrations of Circular Plates Resting on Elastic Foundation with Elastically Restrained Edge Against Translation

1. Introduction

Circular plates resting on elastic foundation
have a wide range of applications in the static
and dynamic design of linear/nonlinear
vibration absorbers, dynamic exciters, telephone
receiver diaphragms, computer discs, printed
circuit boards etc. (Leissa 1969). Due to the
essential use of vibration data in the
computation of stresses in such structures,
reliable prediction of vibration data is of great
importance. In view of its importance in
engineering design, the problem of vibration of
circular plates on elastic foundation has
attracted the focus and attention of many
researchers.

Some of the recent studies have reinstated
the classical approach efficiency in analyzing
the vibrations of variety of structures. Circular
plate  problems allow for significant
simplification in view of their symmetry, but
still many difficulties arise when the plate
boundary conditions become complex involving
linear and rotational restraints. A recent review
of literature shows that very few studies exist on
the study of circular plates resting on elastic
foundations. Wang and Wang (2003), who
observed the switching between axisymmetric
and asymmetric vibration modes, have recently
investigated the effect of internal elastic
translational supports.

The vibration characteristics of plates resting
on an elastic medium are different from those of
the plates supported only on the boundary.
Leissa (1993) discussed the vibration of a plate
supported laterally by an elastic foundation.
Leissa deduced that the effect of Winkler
foundation merely increases the square of the
plate natural frequency by a constant. Salari et
al. (1987) speculated the same conclusion.
Ascione and Grimaldi (1984) studied unilateral
frictionless contact between a circular plate and
a Winkler foundation using a variational
formulation. Leissa (1969), who tabulated a
frequency parameter for four vibration modes
of a simply supported circular plate with
varying rotational stiffness, presented one of the
earliest formulations of this problem. Kang and
Kim (1996) presented an extensive review of the
modal properties of the elastically restrained
beams and plates.

Zheng and Zhou (1988) studied the large
deflection of a circular plate resting on Winkler
foundation. Ghosh (1997) studied the free and
forced vibration of circular plates on Winkler
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foundation by an exact analytical method.
(Chang and Wickert (2001); Kim ef al. (2001) and
Tseng and Wickert (1994) studied the dynamic
characteristics of bolted flange connections
involving circular plates displaying beating type
of repeat frequencies and typical mode shapes
of vibration. Bolted flange connections are
practically the best examples for the elastically
restrained boundary conditions of circular
plates on partial or continuous Winkler type
elastic foundation.

The most general soil model used in practical
applications is the Winkler (1867) model in
which the elastic medium below a structure is
represented by a system of identical but
mutually independent elastic linear springs.
Recent investigations have reiterated the
efficiency of the classical approach (Soedel 1993)
in analyzing the behavior of structures under
vibrations. There are other works (Weisman
1970; Dempsey et al. 1984; Celep et al. 1988)
dealing with the study of plates on a Winkler
foundation. In general, those dealing with
vibrating plates, shells and beams are concerned
with the determination of eigenvalues and
mode shapes (Leissa 1969).

A good number of studies was conduced
(Wang and Lin 1996; Kim and Kim 2001; Yayli
et al. 2014) using the method of Fourier series for
estimating the frequencies of beams with
generally restrained end conditions including
the effect of elastic soil foundation. The method
includes the use of Stoke’s transformation in
suitably modifying the complex boundary
conditions. Very much similar to the dynamic
stiffness matrix approach, the elements of the
matrix involving infinite Fourier series are
explicitly obtained in these studies. The
determinant of this matrix for each case
considered leads to the frequency equation and
the same can be solved using well known
numerical methods. The results obtained for
various elastically restrained beam cases in
these studies tallied well with those available in
the literature establishing the efficiency of this
method.

In view of the necessity of using complex
combinations of rotational and translational
springs at the circular plate boundary to
suitably simulate the practical non-classical
boundary connections being adopted in a wide
range of industrial applications (Bhaskara Rao et
al. 2009; Bhaskara Rao et al. 2010; Lokavarapu
and Chellapilla 2013; Bhaskara Rao et al. 2015;
Lokavarapu et al. 2015; Rao et al. 2016), the use
of exact method of solution becomes imperative
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and hence the same is adopted in this paper.
Even though the method adopted here is
classical, the particular case of vibration of
elastically restrained circular plate resting on
elastic foundation considered here is not
addressed within the available literature.

Utilizing the classical plate theory, this paper
deals with an exact method of solution for the
analysis of thin circular plate free transverse
vibrations that is elastically restrained against
translation and resting on Winkler-type elastic
foundation. For estimating the influence of edge
restraint against the elastic foundation
translation and stiffness on circular plates
natural frequencies, parametric investigations
are carried out by varying the values of elastic
edge restraint stiffness against the elastic
foundation translation and stiffness. The results
obtained on natural frequencies of vibration
clearly show that the vibration characteristics of
the circular plate undergoing free transverse
vibrations are found to be profoundly
influenced by these variations. Computations
are carried out for natural frequencies of
vibrations for varying values of translational
stiffness ratio and stiffness parameter of
Winkler-type foundation. The results that are
presented for twelve modes of vibration both in
tabular and graphical forms are believed to be
quite useful for designers in this area.

2.  Mathematical Formulation of the
System

The considered elastic thin circular plate is
supported on a Winkler foundation as shown in
Fig. 1. In the classical plate theory (Leissa 1969),
the following fourth order differential equation
describes free flexural vibrations of a thin
circular uniform plate:

DYVAw(r,0,1)+pho?w(r,0,)/at2 =0 (1)

D=Eh3/ 12(1—1/2) is the flexural
rigidity of a plate and a,h,p,E,v are the plate’s

where

radius, thickness, density, Young’'s modulus
and Poisson’s ratio, respectively.

The homogeneous equation for Kirchhoff’s
plate on one parameter elastic foundation is
given by the following equation:

D.V4W(r,6, t) + Kyww(r,6,t) +
pha2w(r,0,t)/at2 =0

(2)
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Displacement in (2) can be presented as a
combination of spatial and time dependent
components as follows:

Let w(r, 6,t) =W (r, )e'* ©)
Now substitute (3) in (2)
DVAW(r,8)+(Ky — pha? )W(r,8)=0 )

The solution of the equation takes the
following form

Y

where Ayp and Cyyp are constants, Jp, is Bessel

.cosng,n>0

Jn(lmnrj+cmnln
Wmnn(r.0) = Amn
m

®)

function of the first kind of first order and Iy, is

modified Bessel function of the first kind of first
order, indexes M and Nare positive integers
and correspond to the number of concentric
circles and nodal diameters in each flexural
mode. Considering an elastically supported
plate as shown in Fig. 1, boundary conditions
can be formulated at r=a, in terms of
translational stiffness ( KT ) as follows:

My (a,6)=0 (6)

Vr (a,0) = KT W(a,0) @)

where the Kelvin-Kirchhoff and bending

moment are defined as follows:

' a

<
<%

A 4

Figure 1. A thin circular plate with translational
elastic edge restraint and supported
on elastic foundation.
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By applying Eqgs. (6) and (8), we obtain the
following equation

(10)

From Egs. (5) and (10), we derive the following
equation

r

aZW(a,e)+V[16W(a,0)+iaZW(a,9)

or? rooor 2 562

2v 4n?
- +—P., +|2+ J, (4
an Amn mn { ﬁmnz:l n( mn)
Cmn = 2
Tmn + 2 Smn +[2_ 4m2 :|In(ﬂ“mn)
ﬂ”mn /1mn
(11)

where P, = Jn;1(Amn )= In-1(Zmn );
Qmn =Jn+2(Amn )+ In-2(Amn )’

Smn = In+1(Amn )+ In-1(Amn )

Tmn = In+2(Amn )+ 1h-2(4mn );

From Egs. (7) and (9), we get the following

o 2 10
2 v2(a,0)+(1-v)2-2
v W@f)rov)ta,
sy — KT W(a,0
102W(a0) 1 aw(ae)||” [TV
r o oroé (2 00
(12)

From Egs. (5) and (12), we derived the
following equation

2 [ 2
20 4+4(2—-v)n 8(3-v)n 4 8
Rmn—/lmn—3+ /(1 ) Pmn — ( 13) ) ; 3T In(Amn)
mn mn
Crn = 8 mn E - m__ (13)
2 2
2T, 4-4(2-v)n 8(3-v)n 4 8
Umn + lm”+ 3 4=4 2) Smn + ( L ——5T In(Amn)
mn Amn Amn Amn
L Amn ] -
3
a’K
where, T = T
I:)mn = ‘Jn+l(/1mn)_‘Jn71(/1mn) ; an :Jn+2(ﬂmn)+~)n—2(/1mn)? Rmn = ‘]n+3(/1mn)_‘Jn73(/lmn)"

Son = loin () + 10 (Ain) 7 Tmn = Tn+2(Amn )+ 1n—2(A4mn ); U,

If K; — oo then this case becomes a simply

supported boundary condition as shown in Fig.
2. The frequency equation can be calculated
From Eqs. (11) and (13), which allows

determining eigenvalues A, . The mode shape
parameters Cpyp, can be determined corres-

ponding to these eigenvalues by using either Eq.
(11) or Eq. (13). The amplitude of each vibration
mode in Eq. (5) is set by the normalization
constant App determined from the following

condition.

2ra
”Wmn(rﬂ)wpq(r,e)rdrde =M
0

0

OO,

mn“mp“ngq

(14)
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I n+3 (ﬂ’mn) + I n-3 (;l’mn) ;

where, M is a mass of the plate,

Opp =0pg =1if M=p,n=q and J,,0,,=

0if m# por n#g.

Figure 2. A simply supported thin circular plate
resting on elastic foundation.
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The normalization constant A can be
derived using Egs. (5) and (14) as given below:

2
/‘Lmnr

1 2ra Jn( a ]+

Ann = —2.j | N .cosng | rdrd@
r
ma~ 00 Cmn'ln( mn j
a
(15)
In Eq (4), the natural frequency is defined as
2

o | A (R] (16)

a2 Ph

It is clear from Eq. (16) that the natural
frequency parameter @,,is dependent on the

plate radius ‘a’.

From Eq. (16) we can express

4 2
ﬂmn4:M 17)
D
A = A" & (18)
K,a’
where £2 = —¥ 19
4 D (19)
* 4 l
' =’ + 8% 20
3. Solution
Using Matlab programming, computer

software with symbolic capabilities, solves the
above set of equations. The program determines

. * .
eigenvalues (Amn ), for a given range of

boundary conditions. The boundary’s linear

translational non-dimensional restraint
parameter can be defined as follows:
K 3
T8 (21)
D
4
g =Kl @)
D

-1
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The following represent the input parameters
to the program; (i) Translational stiffness ratio
(T); (ii) Foundation ratio (&); (iii) Poisson’s
ratio (v); (iv)

(N); (v) Suggested accuracy for eigenvalues

Upper bound for eigenvalues

(d); (vi) Number of mode shape parameters
(n);. The program finds eigenvalues lmn* by

using Matlab root finding function.

4. Results and Discussion

The code developed is used to determine
eigenvalues of any set or range of translational
and foundation constraints. This code is also
implemented for various plate materials by
adjusting Poisson’s ratio. Such a wide range of
results is not available in the literature. The
eigenvalues for the plate edge, which is
elastically restrained against translation and
fully resting on the elastic foundation, at various
values of the translational stiffness ratios, are
computed and the results are given in Table 1.
The effects of the translational stiffness ratios
are plotted in Fig. 3. As seen from Fig. 3,
eigenvalues increase with an increment in the
translational stiffness ratio, and the plates
become unstable in the region when the
translational stiffness ratio exceeds a certain
value. Twelve vibration modes are presented in
Fig. 3. The smoothened stepped variation is
observed in Fig. 3. The stepped region increases
with increase in translational stiffness ratio and
vibration modes. The location of the stepped
region with respect to T changed gradually
from the range of 0.01526 t [9.9997] * - 5587.5316
[10] to 16.62296 [14.6739] - 611824.96917
[16.75055]. Here trepresents translational
stiffness ratio and * represents Eigen values
throughout the text. Here the value in the
bracket represents eigenvalue. The simply
supported boundary conditions (Fig. 2) could be
accounted for by setting (K; — o) shown in

Fig. 1. The frequency in this case is 2.23175 and
this is in good agreement with the results
published by Wang (2005). Another result,
considered for comparison, is from Rao and Rao
(2009) on a study of the case of vibrations of
elastically restrained circular plates supported
on partial Winkler foundation. When the



Table 1. Eigenvalues for different Translational stiffness ratio for £ =100 & v =0.33.

0¢

logio T Ao A10 A20 Ao1 A1 A21 Aoz A1z A2z Ao3 A13 A23
3 10 10.0205 103517 1010358 10.79568 1246774 10.29701 11.43857 13.52984 10.63672 122505  14.67332
2 10 10.02051 1035171 1010359 1079568 1246775 10.29702 1143857 1352985 10.63673 12.25051 14.67332
1 10.00005  10.02061 103518 10.10368 1079576 1246779 10.29711 11.43864 13.52989 10.63682 1225056 14.67335
0 10.00047  10.02162 1035263 10.10462 1079649 1246827 10.29803 11.43927 13.53026 10.63769 1225109 14.67365
1 10.003 10.03287 1036125 1011468  10.804 1247302 10.30745 11.44568 1353403 10.64649 1225645 14.67667
2 10.00568 101199 1046887 102319  10.89095 1252351 1042003 115759 13.57333 1074585 1231326 14.70772
3 10.00614 10203  11.00421 1049407 11.61576 131793 1091134 12.27823 14.08459 11.41839 1299719  15.0966
4 1000619 10.21322 11.14468 1053794 11.94459 1415323 11.03916 12.88272 1533948 11.70347 13.90786 16.53545
5 1000619 1021423 1115725 1054212 1197273 14.2438 11.05093 12.93527 1547979 1172934 13.99516 16.74092
6 1000619 10.21433 11.15849 1054254 1197546 14.25215 11.05209 12.94027 1549231 1173186 14.00329 16.75866
12 1000619 10.21434 1115862 1054258 1197576 1425307 11.05222 12.94082 1549369 1173214 14.00418 16.7606
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Table 2. Eigenvalues for different Foundation stiffness ratio for T =100 & V =0.33.

Logio Aoo Ao Az Ao1 A A1 Aoz Az Az Aoz Az Az
¢
3 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197  6.50356 9.33292 12.43922  7.59879 10.67534  13.84974
2 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197  6.50356 9.33292 12.43922  7.59879 10.67534  13.84973
-1 2.18365 4.70077 6.69704 5.56684 7.98679 10.99197  6.50357 9.33292 12.43922  7.59879 10.67535  13.84974
0 2.20704 4.70315 6.69786 5.56827 7.98727 10.99216  6.50447 9.33323 12.43935  7.59936 10.67555  13.84983
1 3.3284 4.92488 6.77875 5.7064 8.03541 11.01074 6.5926 9.36352 12.45218 7.65514 10.69583  13.84914
2 10.00568  10.1199 10.46887  10.2319 10.89095 12.52351 10.42003 11.5159 13.57333  10.74585 12.31326  14.70772
3 31.62296 31.62664 31.63867 31.63037 31.6549 31.73756 31.63691 31.68259 31.81038 31.6491 31.72496  31.90972
Table 3. Eigenvalues for different Translation and Foundation stiffness ratios for v =0.33.
logio¢ oo Mo Ao Aot A A1 Aoz A2 Az Aoz A3 Azs
&
logio T
-3 0.2115 3.0115 6.2054 4.52915 7.73687 10.9091 5.93655 9.18564 12.3826 7.27469 10.57846 13.80849
-2 0.37648 3.01187 6.20544 4.52925 7.73689 10.90911 5.93659 9.18566 12.38261 7.27471 10.57846 13.8085
-1 0.67602 3.0156 6.20584 4.53032 7.73709 10.90918 5.93708 9.18578 12.38266 7.27499 10.57855 13.80854
0 1.30374 3.067 6.21074 4.54336 7.73963 10.91008 5.94302 9.18733 12.38328 7.27834 10.57959 13.80899
1 3.25317 3.90325 6.34932 4.87899 7.81237 10.93614 6.10341 9.23131 12.40119 7.36838 10.60869 13.82199
2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5152 13.57333 10.74585 12.31326 14.70772
3 31.62297 31.62939 31.65958 31.63958 31.68744 31.78104 31.65573 31.72292 31.85232 31.67796 31.76831 31.94926

o] N'D puv ovy g 1
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support position is in full span, which means
that when b =1, the case becomes a circular
plate having full foundation support with
elastically restrained edge against translation.
For this case, the frequency is 2.1834 and that is
in good agreement with the frequency of
2.18341 obtained from the present study.

The eigenvalues at various values of the
foundation stiffness ratios for
T=100&v=0.33 are computed and the
results are given in Table 2. The effects of the
foundation stiffness ratio on eigenvalues are
plotted in Fig. 4. As seen from Fig. 4, the
eigenvalue increases with increase in the
foundation stiffness ratio, and the plate becomes
stiffer and stronger as the value of foundation
stiffness becomes greater than 102. As seen from
the Tables 1 and 2, the influence of foundation
stiffness ratio on eigenvalue is relatively greater
than that of the translation stiffness ratio in
increasing the overall natural frequencies of the
plate support system. As seen from Fig. 4, for all
the modes considered here, up to a value of 10
the eigenvalues stay constant and beyond this
value all the curves tend to converge to a
constant eigenvalue as the foundation stiffness

=t
4]
1

ratio increases up to 103. The convergence starts
from 1.07897 [2.0325779] and continues up to a
constant value of 9.63274 [13.84796].

The eigenvalues at various values of the
translational stiffness ratios and foundation
stiffness ratios are computed and the results are
given in Table 3. The effects of the translation
and foundation stiffness ratios on eigenvalues
are clearly observed in Fig. 5, eigenvalues
increases with an increment in both the
translational and foundation stiffness ratios. As
observed from the Table 1 and 3, the influence
of foundation stiffness ratio on eigenvalue is
more predominant than that of translation
stiffness ratio alone. From the results presented
in Tables 1 and 3, we can see that the influence
of foundation stiffness ratio on eigenvalues is
more predominant than that of translation
stiffness ratio. From the results given in Tables 1
to 3, one can easily find that the eigenvalues
become lower for lower values of foundation
and translation stiffness ratios. As seen from
Fig. 5, all the curves are stable up to a certain
region beyond which the curves tend to
converge for increasing values of translation
and foundation stiffness ratios.

Egenvalues,Amn

- )23

15

Transverse stiffness ratio, Log, T

Figure 3. Effect of translational stiffness ratio T on eigenvalues, 4,
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w
al

>

(',,)‘Y X4 ¢ [

Foundation parameter,Log;, §

Figure 4. Effect of foundation stiffness ratio, £ on eigenvalues, Ayp.

Egenvalues, Amn

35

30 A

25 1

-1 0 1 2 3 4

Transverse stiffness, Logy; T & Foundation rates,Logq§

Figure 5. Effect of translational, T and foundation, & stiffness ratios on eigenvalues, Amp.

Table 4. Eigenvalues for different Poisson ratios.

A\

T=£-1000 T=100,6=10 T =10,£=1000 T =1&=10 T =50, =50

0

0.1
0.2
0.3

0.4

31.62925
31.62929
31.62934
31.62938
31.62942

4.92456 10.03027 3.62553
4.92466 10.03111 3.64904
4.92476 10.0319 3.6708

4.92485 10.03265 3.69097
4.92494 10.03336 3.70974

7.28924
7.2896
7.28993
7.29025
7.29056
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12
10 & i i il N
——T=100,
£ 8 €=10
- > > > —=—T=10,
1]
g 6 £=1000
[ = =
e ¢ & = & ¢ T=1,8=10
T
w —=<=T=50, £=50
2
0
0 0.1 0.2 0.3 0.4
Poisson's ratio, v
Figure 6. Effect of Poisson ratio, v on eigenvalues, Ayp.
5. Conclusion References

This work deals with a method of computation
of eigenvalues of flexural vibrations of a circular
plate with translational edge supported and
resting on Winkler foundation using a
specifically ~written MATLAB code. The
computed numerical results are presented in a
tabular format to enable estimating the accuracy
of approximate methods being used by other
researchers for solving such problems. Two-
dimensional plots of eigenvalues are drawn for
a wide range of translational and foundation
stiffness ratios facilitating their use in design.
From the numerical and graphical results
presented in this paper, it can be easily observed
that the eigenvalues remain constant only for a
limited range of constraints specific to each
vibration mode and then steeply increase with
the increasing values of foundation stiffness
ultimately converging towards a constant value.
It is also observed that the influence of
foundation stiffness ratio on eigenvalues is
more predominant than that of translational
stiffness ratio.
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