The Journal of Engineering Research (TJER), Vol. 17, No. 1, (2020) 24-33 :, _’ER'

IDENTIFICATION OF OBSTRUCTIVE SLEEP APNEA USING
ARTIFICIAL NEURAL NETWORKS AND WAVELET PACKET
DECOMPOSITION OF THE HRV SIGNAL

Sarah Qasim Ali and Abdulnasir Hossen *
Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University
Oman, P. O. Box 33, Al-Khoudh, 123 Muscat, Oman.

Abstract: The advancement of telecommunication technologies has provided us with new promising alternatives
for remote diagnosis and possible treatment suggestions for patients of diverse health disorders, among which is
the ability to identify Obstructive Sleep Apnea (OSA) syndrome by means of Electrocardiograph (ECG) signal
analysis. In this paper, the standard spectral bands’ powers and statistical interval-based parameters of the Heart
Rate Variability (HRV) signal were considered as a form of features for classifying the Sultan Qaboos
University Hospital (SQUH) database for OSA syndrome into 4 different levels. Wavelet packet analysis was
applied to obtain and estimate the standard frequency bands of the HRV signal. Further, the single perceptron
neural network, the feedforward with back-propagation neural network and the probabilistic neural network have
been implemented in the classification task. The classification between normal subjects versus severe OSA
patients achieved 95% accuracy with the probabilistic neural network. While the classification between normal
subjects versus mild OSA subjects reached accuracy of 95% also. When grouping mild, moderate and severe
OSA subjects in one group compared to normal subjects as a second group, the classification with the
feedforward network achieved an accuracy of 87.5%. Finally, when classifying subjects directly into one of the
four classes (normal or mild or moderate or severe), a 77.5% accuracy was achieved with the feedforward
network.
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Identification of Obstructive Sleep Apnea Using Artificial Neural Networks and Wavelet Packet Decomposition

1. INTRODUCTION

A sleep disorder occurs when the pattern of sleep is
interrupted repeatedly during sleep (Kumar V 2008).
Lack of sleep results in abnormalities in functions of
the brain leading to cognitive impairment, changes in
mood, low productivity, daytime sleepiness and
abnormal hormonal rhythms (Wilson S 2016). Sleep
apnea is a chronic disease that affects the health and
productivity of individuals (National Heart, Lung and
Blood Institute 2016) since it causes abnormal sleep
pattern. Obstructive Sleep Apnea (OSA) is the most
common type of sleep apnea followed by Central
Sleep Apnea (CSA) and Mixed Sleep Apnea (MSA).
OSA affects 3~4% and 2% of middle-aged men and
women respectively (Lee W et al. 2008). Unlike CSA
which results from heart failure or brain disorders,
where the brain fails to control breathing leading to
cessation of all respiratory airflow and movements,
OSA results from a repeated process of complete or
partial collapse in the upper airways of the respiratory
system ranging from few seconds (minimum 10 sec)
to minutes despite the ongoing brain efforts for the
body to breath. The OSA events may occur more
than 30 times and up to 100 times per hour. MSA on
the other hand, is a mixture of CSA and OSA in the
same individual. (American Academy of Sleep
Medicine 2001; National Sleep Foundation 2016).
OSA has been related to some serious co-morbidity
such as cardiovascular diseases, arrhythmia, strokes,
obesity, depression, certain types of hypertension and
type 2 diabetes mellitus (Global Leaders in Sleep and
Respiratory Medicine 2013; Xie W et al. 2014). There
are several screening methods used for OSA detection
to find evidence of its presence in patients for further
evaluation. These methods depend on psychometric
and physical evaluations during the routine health
check-ups. Polysomnography (PSG) sleep study is the
gold standard test for sleep apnea diagnosis. This test
requires the patient to sleep in a sleep laboratory
while attached using several electrodes to many
devices for different biometric measures carried out
by qualified sleep physicians overnight. The severity
of sleep apnea is commonly determined by an Apnea-
Hypopnea Index (AHI) which represents the number
of obstructive, central, mixed and hypopnea episodes
occurring during an hour of sleep (American
Academy of Sleep Medicine 2001). If the AHI ranges
between 0-5 apneic episodes during an hour of study
time or sleep then the condition is considered normal.
An index of 5-15 is considered mild while an index of
15 — 30 is considered moderate and if the index is 30
or above, the subject is considered to have a severe
degree of sleep apnea (Global Leaders in Sleep and
Respiratory Medicine 2013). Electrocardiography
(ECG) is a method used to measures the electrical
activity of the heart by placing electrodes on different
parts of the body (WebMD 2016). A normal sinus
rhythm reflects the normal activity of the heart while
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pumping blood to perform the sympathetic and
parasympathetic activities (UCDavis Health System
2016). A typical ECG signal is produced when the
heart chambers contract and expand to pump
oxygenated-blood throughout the body and circulate
the desaturated blood to the lungs. Fig. 1 (a) shows a
typical ECG signal (Sharma S. et al. 2019).

Heart rate (HR) is a simple measurement that
indicates the average number of heart beats during a
certain time period (usually, a minute). A low HR
reflects resting status while high HR indicates stress
or exertion (Moore J 2016). Heart Rate Variability
(HRV) on the other hand is a measure of the time
variability in milliseconds between consecutive beats
or correspondingly in the instantaneous HR. In other
words, variation analysis of instantaneous HR versus
time axis. HRV is sometimes called the R-R interval
(RRI) analysis, where R is the peak point of the QRS
complex in the ECG wave, or the Inter-Beat-Interval
(IBI) analysis. When the individual is at rest, high
HRYV is favorable while low HRV is observed at an
active or stressed state. HRV has been used as a
measurement to assess overall cardiac health and
reflect the state of the Autonomic Nervous System
(ANS) activities (Hamilton G. et al. 2019).

The ANS is the involuntary division of the
nervous system and consists of autonomic neurons
that conduct impulses from the central nervous system
(brain and/or spinal cord) to glands, smooth muscles
and cardiac muscles (DanTest Clinicians Team 2016).
The role of the ANS is to continuously fine-tune the
functions of organs and organs systems to maintain
internal stability and balance. ANS has two main
components  called the  Sympathetic  and
Parasympathetic Nervous Systems (SNS and PSNS
respectively). The SNS triggers the fight or flight
response leading to increased heart rate, blood
pressure and sweating, and pupil dilation etc. On the
other hand, the PNS complements the operations
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Figure 1: (a) Normal ECG signal.
(b) ECG signal at Apnea Episode.



Sarah Qasim Ali and Abdulnasir Hossen

performed by the SNS and triggers the rest and digest
response where the opposite behavior occurs. When
the airway is partially or completely obstructed; the
heart rate changes and hence ECG signal alters. When
the oxygen level decreases in the body during sleep
apnea event the heart cells receives less oxygen and
hence the heart rate is reduced and the R-R interval
increases between consecutive beats as shown in
Fig.1 (b) (Sharma S. et al. 2019).

This alters the brain's sleep and wakes the brain
for immediate action. The brain responds by sending
strong tones to the respiratory system to increase
breathing speed. The later increases the heart rate
suddenly and hence increases the blood pressure in
order to pump more blood to compensate for the lack
of oxygen.

In frequency-domain analysis, signals can be
represented in a graph that shows how much (energy)
of the signal lies within given frequency bands over a
range of frequencies. The well-known Fourier
methods such as the Fast Fourier Transform (FFT)
implementation of the Discrete Fourier Transform
(DFT) are usually used for identifying the available
spectral content for both stationary and non-stationary
signals (Polikar R 2011). However, for non-stationary
signals, the frequency content varies with time and
hence DFT based methods fail to provide the time-
related information at which those frequencies occur.
Moreover, it can only reflect the frequencies that are
present in the signal but not when they were present.
Since most of the physiological signals like the ECG,
etc. are non-stationary signals; time-frequency
analysis such as the Short-Time Fourier Transform
(STFT) and Discrete Wavelet Transform (DWT) are
used as alternatives to the Fourier analysis when
estimating the available PSD content (Polikar R
2011). The classification features used in this research
depend on the Power Spectral Density (PSD) at
different frequency levels estimated by implementing
the Discrete Wavelet Packet Decomposition (DWPD)
method. This is to overcome the resolution related
problems of the STFT. The discrete wavelet
decomposition utilizes various mother wavelets of
different scales to be able to adapt to fast and slow
changes in the analyzed signal (Polikar R 2011). The
wavelet decomposition method is implemented using
filter banks (Misiti M et al. 1996). A set of high pass
and low pass filters allow the signal to be decomposed
reaching a certain decomposition level in which the
signal can be further analyzed, de-noised or
compressed (Misiti M et al. 1996). The PSD
calculation is done by mathematical modulation to the
filters output coefficients (Sysel P et al. 2008). The
DWT allows only the low-frequency components of
the low pass filter to be analyzed to further levels as
they are thought to be the ones that carry important
information (Misiti M et al. 1996). However, DWPD
allows both outcomes of the filters (low and high-
frequency) to be further decomposed. The later
emphasizes the outliers, edges and transient signals
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which are crucial to tackle the OSA episodes. Hence,
the DWPD leads to finding more desirable features
for classification applications.

In time domain analysis, a signal instance’s real
values are visualized. A time domain graph shows
how a signal changes with time. OSA episodes can be
analyzed by observing the cyclic length variability of
the HRV (a.k.a. RRI) signal. The term NN is used
sometimes in place of the RR to emphasize that
normal beats are being processed. There exist
multiple well-established features that are normally
used to analyze the beat-to-beat intervals (Mietus J et
al. 2002). These features include: the Root Mean
Square of Successive Differences (RMSSD), the
Standard Deviation of Successive Differences
(SDSD), the Standard Deviation (Std.) of entire RRI
signal, the mean of the entire RRI signal, the NNx
family measures which include (NN of x<50: NN50,
NN30, NN20...etc.), and finally the pNNx family
measure.

2. ECG DATABASE

It has been suggested by some researchers, that the
uniqueness of the data sets affects the classification
results of the different proposed methods, hence
similar results cannot be obtained using different
datasets (Lado M et al. 2011). In this research the
ECG signals were collected from the Sleep
Laboratory of the Physiology Department of the
Sultan Qaboos University Hospital (SQUH) while
performing PSG studies for 80 subjects. These
records were obtained from 20 normal subjects
(0<AHI<5), 20 mild subjects (5<AHI<15), 20
moderate subjects (15<AHI<30) and 20 severe
subjects (AHI>30). The records were divided into two
groups: a training set and a test set; where both of the
sets comprise of 10 normal ECG signals and 10
Apneic ECG signals from each of the mentioned
groups (total of 40 signals per set). Features were
extracted from both sets and the training set is used to
train the neural networks for classification purpose
while the test set was used to check the classification
performance.

3. RRI EXTRACTION

The HRYV signal is generated by finding the R-to-R
Intervals (RRI) from the original ECG signals as
declared in Fig. 1 (a). The proposed method in (Al
Ghunaimi B 2003) was used to generate the RRI data.
In order to accurately identify those R peaks, QRS
detection is to be carried. The QRS detector that was
used in (Al Ghunaimi B 2003) is a part of the
Physionet tools available in the Physionet website and
is based on the Pan-Tompkins Algorithm. Intervals
corresponding to Normal-to-Normal peaks are
extracted. The generated RRI data could contain false
intervals, missed intervals and/or ectopic intervals.
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False RR intervals were removed by setting the lower
and upper limits of its values to ones found in normal
subjects which are typically around 400-2000
milliseconds. Removing of outliers was achieved
using a 41-points Moving Average Filter (MAF). Re-
sampling at 1 Hz and substituting of missed peaks
were then achieved by simple linear interpolation
implemented by MATLAB (Al Ghunaimi B 2003).
Re-sampling and estimation of missed value are
intended to generate an equally spaced RRI data and
preserve the temporal sequence that is necessary for
the frequency domain analysis. At this point it can be
assumed that a clean RRI data sampled at 1 Hz
containing no missed or outlier values was generated.

4. SPECTRAL FEATURES

In this research, the RRI signals were decomposed
using discrete wavelet packet decomposition up to 9
levels in order to define the VLF band precisely
according to the standard definition (VLF starts at
0.0033 Hz). At the ninth level, the signal would have
been decomposed into 512 frequency bands including
the low-frequency and high-frequency bands.

The PSD summation of these bands provides the
total power spectrum of the signal, while the PSD
summation by grouping according to certain
frequency bands would provide us the desired features
for the analysis. The discrete RRI signals are sampled
at Fs=1 Hz and the maximum spectral frequency of
RRI is found by Fs/2=0.5 Hz. Using DWPD, the 0.5
Hz is decomposed into 512 bands (9 levels = 2°),
while each band covers 0.5/512= 0.0009765625 Hz.
Therefore, the standard spectral bands of the
decomposed RRI are covered as shown in Fig. 2. In
addition, the spectral values near zero Hz have the
most energy content that dominates other spectral
values. Therefore, we intend to exclude those spectral
values below 0.0033 Hz; hence, the first three bands
of the decomposed RRI signal were ignored and the
PSD of the VLF was estimated starting from the 4%-
band at 0.00390625 Hz up to 0.040039063 Hz.

Fig. 3 shows the spectral powers summation of the
different bands defining each feature. Furthermore,
three other features extracted from the power ratios of
the VLF, LF and HF features are calculated to form a
total of six spectral features. These ratios are
described as in Fig. 4.

In Fig. 5, the power of the HF band is sketched for
both normal and severe subjects for the training set.
The values of the HF band at normal subjects are
higher than those of severe subjects. However, some
severe subjects have powers that overlap with normal
subjects resulting in difficulties to classify and hence
a combination of features are to be investigated (The
University of Nottingham 2017).
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5. STATISTICAL FEATURES

In this work, multiple features were calculated from
the RRI signals in time domain using MATLAB
software. These features include the Root Mean
Square of Successive Differences (RMSSD) which is
calculated by finding the square root of the mean of
the successive differences between adjacent NNs. The
Standard Deviation of Successive Differences
(SDSD) where the Standard Deviation of Average NN
Intervals (SDANN) is calculated over a short period
of 5-minutes or so to measures the change in heart
rate due to cycles longer than five minutes. The
Standard Deviation (Std.) of entire RRI signal, the
mean of the entire RRI signal, The NNx family
measures which include (NN of x<50: NN50, NN30,
NN20 etc.), where it represents the number of pairs of
successive NN’s that differ by more than x=50, 30,
20...etc. milliseconds and finally the pNNx family
measure which includes the NNx measure divided by
the total number of NNs of the signal. To sum up, the
features are: the RMSSD, pNN15, pNN20, pNN30,
pNN50, NN15, NN20, NN30, NN50, SDANN and
Standard deviation of the entire signal which equate
to eleven features.

In order to observe a relation between time
domain and frequency domain features, the values of
RMSSD, NN50, and pNN50 features were
normalized by dividing them to the total power of the
RRI signal as shown in Fig. 6. Similar behavior of
Fig. 5 was observed where the power of the high-
frequency band for severe apnea level subjects
decrease and the same features’ values increase for
normal subjects. This allows us to use these features
in a similar analogy as spectral features for
representing the parasympathetic activity of the
Autonomous Nervous System for instance. Of course,
variations are also present in some of the OSA
patients where their spectral or time domain features
exhibit similar behavior as normal subjects making it
more difficult to differentiate between the cases using
a single feature.

6. NEURAL NETWORKS

The Artificial Neural Networks (ANNs) were
designed based on the rudimentary understanding of
the biological nervous system back in the 1950s to
help solving and computing any arithmetic or logical
statement (Hagan M et al. 1996). The ANNs are a
collection of computational units called neurons
composed of inputs with weights, biases and transfer
functions to perform the thresholding act and produce
an output. The three networks used in this work are of
supervised learning type; this is because we already
have information about the subject’s original
condition (normal, mild, moderate, and severe). In
supervised learning, the training set consists of
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multiple training examples each is a pair of input
(feature) and the desired output (target). The
supervised learning algorithm then tries to process
and analyze the training examples to produce an
inferred function (classification boundary region),
which can be used to map new examples. If the
network training and the learning algorithm are
performed well, an optimal scenario would be
generated in which the network will generalize and be
able to determine the class label (target) of unseen
instances correctly (Mohri M et al. 2012). This
section introduces the three artificial neural networks’
models used in this research and describes their
learning algorithms and transfer functions briefly.

The perceptron network refers to multiple-inputs
single-neuron network. It is considered the building
block of a more complicated network called the Feed
forward Neural Network. Usually the single-layer
perceptron is used for binary and linear classification.
The feed forward network is one of the most
commonly used artificial neural networks and is
typically composed of multiple perceptrons aligned in
layers. It is considered the first type of ANN’s that
was used to solve non-linear problems where the
perceptron has failed and is considered powerful
networks that can almost approximate any function
(Hagan M et al. 1996). Probabilistic Neural Networks
(PNN’s) are widely used classification and pattern
recognition. When employed for classification
problems, the class probability of input is estimated
and the class with the highest probability is selected
as the output class. This means that the input belongs
to the class that provides the highest probability when
introduced to that input. The design of a PNN is
straightforward and extremely less complicated than
other multilayer networks. This is because it does not
depend on weights learning and hence does not
require training. A PNN network generalizes well and
is guaranteed to converge to a Bayesian classifier
(simple  well-studied  conditional probabilistic
classifier) providing the correct probability when
presented with enough training data samples. A PNN
consists of several sub-networks, each of which is a
Parzen window pdf estimator for each of the classes.
The inputs are the set of measurements/features and
are used as centers for the radial basis (Gaussian
functions) of the second layer. The third layer
performs an average operation of the outputs from the
second layer for each class and a final voting is
performed by the third layer selecting the largest
value to determine the associated class label.

In this research, the perceptron network is
composed of one neuron of multiple inputs for one
output classification, and two neurons for four outputs
classification embedded with hard limit transfer
function. The feedforward network is composed of
two hidden layers each of five neurons (total 10) of
the tangent-sigmoid transfer function and an output
layer of one or two neurons according to the number
of outputs (similar to perceptron layer) with pure
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linear transfer function. The probabilistic network is
composed of input neurons changing according to the
number of inputs with radial basis transfer function.
Figs. 7 and 8 show the connections of the layers for
the feed forward and probabilistic neural networks.
The performance of the training step and testing
step of the neural networks are investigated by
calculating well-known performance metrics such as
the specificity, sensitivity and accuracy. The
specificity reflects the number of accurately
diagnosed healthy subjects while the sensitivity
reflects the number of the accurately identified
patients. The accuracy is a measure of both of the
correctly classified patients and normal among the
total experiment set. In Fig. 9, the actual meaning for
each performance metric can be observed while the
following equations reveal how they are calculated.

ee TN
Specificit y (%) = ————.100 (1)
P YOO = 10 Fp
. TP
Sensitivity (%) = ——.100 (2
YO =15 EN )
Accuracy (%) = TP+ TN .100 (3)

TP + FP +TN + FN

l

Figure 7. Feedforward neural network layer connections.

Inputs ] [ Hidden Layer 1 ]l Hidden Layer 2 ] l Outputs ]

[ Inputs. ] [ Pattern Laver ][ Category Layer ][ Outputs ]

Figure 8. Probabilistic neural network layer connections.
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Figure 9. Networks performance metrics.

7. IMPLEMENTATION

In this work, four different versions of classification
have been carried out using the perceptron network,
the feedforward with back-propagation network and
the probabilistic neural network. These classification
versions include:

* Version 1: Normal vs. Severe Classification

*  Version 2: Normal vs. Mild Classification

* Version 3: Normal vs. Patient (Mild, Moderate,
Severe) Classification

*  Version 4: Normal vs. Mild vs. Moderate vs.
Severe Classification.

The discrete wavelet packet decomposition was
implemented to extract power estimations of the RRI
signals of SQUH ECG database at the classical
frequency bands with Bi-orthogonal mother wavelet
at 9 levels decomposition. Four different schemes of
training and test data are selected:

Scheme 1: Original first half data for trial:
Original second half data for the test.

Scheme 2: Original second half data for trial:
Original first half data for the test.

Scheme 3: Large set simulated from first-half data
for trial: Original second half data for test.

Scheme 4: Large set simulated from second-half
data for trial: Original first half data for test.

The networks in scheme 1 and 2 are trained by the
features of original data sets containing 10 subjects
for each of the normal, mild, moderate and severe
OSA states. While in scheme 3 and 4, the networks
are trained using a large simulated set generated from
the original data sets. The large training set was
acquired by generating randomly, 1000 uniformly
distributed feature sets between the maximum and
minimum values of each feature from the original
extracted spectral features. The networks testing and
performance computation were carried by the
remaining equivalent-size original data set of 10
subjects in each case.

The statistical time-domain features are used with
classification version number 4 only as it is the most
complicated classification version and hence
investigation with different features may increase the
chance of enhancing the performance.
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8. RESULTS AND DISCUSSION

Figures 10 and 11 display the actual classification
accuracies of every network performing version-1
classification of normal vs. severe OSA conditions
and version-3 normal vs. patient OSA conditions
respectively. The spectral features used are numbered
in Figs. 11 and 12 as: (1. VLF, 2. LF, 3. HF, 4.
VLF/LF, 5. VLF/HF, 6. LF/HF). The patient-class
refers to a set including all the apneic levels of mild,
moderate and severe subjects where the AHI index is
exceeding 6 and up to 100 or more. The features were
selected based on the highest training results they
provided before testing the networks as well as for
their lowest discrepancy among other schemes.
Figures 12 and 13 summarize the results of the
networks at versions-2 and version-4 classification by
emphasizing the spectral features generating the
highest performances. It can be noticed that version-4
classification was the most difficult and the results are
extremely poor. Herein, it can be concluded that
spectral features alone are not enough for this
complicated task. However, when using statistical
time-domain features with the feedforward network;
the result is extremely improved reaching an accuracy
of 77.5% using two features only. The features are of
pPNN20 & pNN30 respectively. This shows that the
statistical features extracted from the RRI signal at the
time domain used with the feedforward network were
able to generate a non-linear decision surface that

helped classifying those subjects unlike the
probability  estimates or linear classification
boundaries generated by the probabilistic and

perceptron networks respectively. It can be observed
that the feedforward with back-propagation neural
network achieved high accuracies at different
classification versions demonstrating the power and
consistency of the network. Further, the specificity
and sensitivity percentages are very close to each
other at the different classification versions of the
different networks which implies that only few unique
cases were miss classified. Table 1, summarizes the
results of the networks at the different classification
versions by emphasizing the features generating the
highest performances using scheme 1 of training. The
classification =~ performance  between  normal
individuals and severe OSA patients was highest
using the probabilistic network where the network
was able to classify the subjects into either normal or
severe conditions at 95% accuracy. This is an
interesting result and shows how powerful the
probabilistic network can be even when trained with a
few sample points; it was still able to generalize well.
Moreover, this accuracy was achieved when using a
single spectral feature which is the very low
frequency power feature. The test set included 20
subjects (10 normal and 10 severe) meaning that the
network only missed the correct classification of one
severe subject at a sensitivity of 90%.
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31

zsﬂ Out
ere put
e @<L E A e 20

zNnrmll
20 Neurons
Sum
Calculate  Contributions of ~ Selectlargest
Distances  |nputs for Each Value
Class

(a) Probabilistic Neural Network: Version-1: Normal vs.
Severe Classification (95% Accuracy)

LF Output
7 — — —
VLF/HF Class
. SNeurons 5Neurons - OneNeuron
" Hidden Layers Output Layer

(b) Feed-Forward Neural Network: Version-2: Normal
vs. Mild Classification (95% Accuracy)

LF
Output
e B . —
v Class
VLF/HF

One Neuron

(c) Perceptron Neural Network: Version-3: Normal vs.
Patient Classification (85% Accuracy)

s @ @@
pNN30
. 5MNeurons 5MNeurons , Two Neurons

e 4
#

Output
Class

" Hidden Layers ’ Output Layer

(d) Feedforward Neural Network: Version-4: Normal vs. Mild
vs. Moderate vs. Severe Classification (77.5% Accuracy)

Figure 14. Neural Networks Topology for the Four
Classification Versions.

The second classification version between normal
and mild OSA patients witnessed its best performance
at 95% accuracy by the feedforward network among
all training schemes (original and large training sets).
Hence, it can be considered a robust network
algorithm, since many examples were introduced to
the network that included different types of apneic
episodes exhibiting different cessation occurrences
and durations. Moreover, when comparing this result
to other researches available in the literature, it is
noticed that many of them had their highest results
when dealing with small sets (~ 30 subjects where
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~10 are normal and ~20 are severe). The latter makes
our results acceptable and the employed database was
efficient when used for classification. The third
classification version between normal and OSA
patients on the other hand, achieved performance
accuracy of 87.5% using three different features
(VLF+VLF/HF +LF/HF) by the feedforward network
and achieved 85% accuracy by the perceptron
network with the three different features (LF+ HF+
VLF/HF). Finally, it can be observed that the highest
achieved test set accuracy of 77.5% in the fourth
classification version between normal, mild, moderate
and severe OSA subjects was accomplished by the
feedforward network using a combination of two
statistical features of pNN20 and pNN30 respectively.
The representations in Fig. 14 demonstrate each
type of network topology with different features as
inputs for the classification versions corresponding to
the best accuracies listed in Table 1.
For the third version, the perceptron network is
sketched oxygenated blood although its performance
accuracy was 85% and less than that of the
Feedforward network 87.5%, in order to show the
topology of the perceptron network.

9. CONCLUSION

Obstructive sleep apnea (OSA) is a common
breathing-related sleep disorder affecting individuals
of different age groups, genders and origins. It is
characterized by short-duration cessations in
breathing during sleep due to the collapse of the upper
airway. OSA is associated with major co-morbidities
such as cardiovascular diseases, arrhythmias, strokes,
obesity, depression, certain types of hypertension and
diabetes. The golden and reliable standard test for the
detection of OSA is a polysomnographic sleep study.

However, this test is time/labor-consuming, expensive
and cumbersome. Analysis of a Heart Rate Variability
(HRV) signal that 1is obtained from an
Electrocardiograph (ECG) signal in time or frequency
domain is an effective, non-invasive and promising
method for the detection of OSA.

In this research, single perceptron, feedforward
with back propagation and probabilistic artificial
neural networks are investigated for their performance
in classifying SQUH database subject’s severity
degree against four -classification versions. The
highest achieved accuracy of 95% was obtained when
using VLF feature with the probabilistic neural
network for normal vs. severe classification (version-
1). The feedforward neural network achieved an
accuracy of 95% as well when classifying normal
versus mild OSA patients at a combination of LF and
VLEF/HF ratio features. In Version 3, the feedforward
network achieves 87.5% accuracy using three features
VLF and VLF/HF and LF/HF for normal vs. patient
(including: mild, moderate and severe subjects in one
group) classification. In the same version, the
perceptron network achieved the highest performance
accuracy of 85% using LF along with HF and
VLF/HF ratio combination of features. Finally, for
OSA severity degree classification (verion-4)
statistical time-domain features provided the highest
accuracy of 77.5% when using a combination of
pNN20 and pNN30 features with the feedforward
neural network.

The results are considered promising since the
networks only used a maximum of three features to
provide such results. Some of the limitations of this
work include the ECG database size, neural networks
training processing-time especially the feedforward
network, feature dimensions (combinations of inputs).
Future research recommendations are to be on

investigating deep learning neural networks.
Table 1. Highest classification results of the networks at training scheme 1.

Network Classification Features Specificity Sensitivity Accuracy
Type Version
Probabilistic Normal vs. Severe VLF 100% 90% 95%
Feedforward ~ Normal vs. Mild LF+ VLF/HF 90% 100% 95%
Perceptron Normal vs. Patient LF+ HF+VLF/HF 80% 86.67% 85%
Feedforward Normal vs. Patients VLF+VLF/HF +LF/HF 90% 86.67% 87.5%
Feedforward ~ Normal vs. Mild vs.

Moderate vs. Severe pNN20+pNN30 80% 76.67% 77.5%
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