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Abstract: Dry-friction forces have been shown to depend not only on the characteristics of the surface in con-
tact but also on the dynamic interaction of the contacting bodies. A viscoelastic mathematical model that
accounts for the interaction at micro-scale of rough surfaces is developed. The mathematical formulation relates
the tribological events at microscopic and macroscopic scales vibration response of a "mass on moving belt".
The viscoelastic properties are presented by combining loss modulus with Young's modulus to obtain a differ-
ential operator on the interference, reminiscent of the Kelvin-Voigt model. The analysis of the system establish-
es the relation between friction force and speed and supports observed behavior of many systems with friction.
The derivations do not rely on a phenomenological account of friction, which requires a presumed friction coef-
ficient. Instead the friction force is accounted for as a result of interaction of the rough surfaces. This has led
to a set of nonlinear ordinary differential equations that directly relate the vibration of the system to the surface
parameters. It is shown that, as a result of coupling of the macrosystem's dynamics and contact, there are com-
binations of parameters at micro- and macroscale that yield negative slope in friction force/sliding speed rela-
tion, a well known source of dynamic instability.

Keywords: Friction/vibration interaction, Dynamic interaction of surfaces

Introduction

1984a; Aronov, et al. 1984b; Aronov, et al. 1984c; Tan and

Contact phenomena involving deformable bodies thrive
in industry and everyday life. Many authors have consid-
ered the mechanical system vibration due to surface inter-
action and examine the surface theories with the presence
of friction (Brockley, et al. 1970; Soom and Kim, 1983;
Ibrahim, and Rivin, 1994; Ibrahim, 1994; Aronov et al.
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Roger, 1998; Tworzydlo, et al. 1992; Tzou, et al. 1998).
In contrast to the earlier published research, the classical
notion of friction coefficient is entirely abandoned in this
work. Instead, friction is obtained as a result of system's
dynamic response that includes time-dependent forces at
the contact.

Numerous works have been devoted to study the fric-
tion-induced vibration. For ease of setup and interpreta-
tion an idealized physical system consisting of a mass
sliding on a moving belt has been considered very often
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(Panovko, et al. 1965; Nayfeh and Mook, 1979;
Mitropolskii and Nguyen, 1997; Popp, 1991; Tondl, 1991,
McMillan, 1997 and Thomsen and Fidlin, 2002), and it
will be in this present study. The physical contact model
and governing equations with the inclusion of the vis-
coelastic properties are presented in this paper to study the
dynamic effects of the surface irregularities as a result of
mechanical interactions.

Several analytical or computational methods have been
applied to solve the dry friction problems to increase the
understanding of friction and vibration phenomenon in
mechanical systems. Some of the elastic, elastic-plastic,
and plastic contact models are reformulated to estimate a
normal and tangential contact force, contact area and con-
tact stiffness. The elastic and the elastic-plastic models
developed by Abdo and Farhang (2005) and by Abdo and
Shamseldin (2005) in addition to the research results per-
tinent to the estimation of contact stiffness, Abdo (2006)
and Abdo (2005) are used in this study along with the
addition of the viscoelastic effects of contact. In this
work, the viscoelastic properties are presented by combin-
ing loss modulus with Young's modulus to obtain a differ-
ential operator on the interference, reminiscent of the
Kelvin-Voigt model.  There is no assumption of
friction/velocity relation made in the formulation of the
governing differential equations. The elastic and rate-
dependent contact force components between rough sur-
faces are presented to obtain the equations governing the
vibration response of mass-spring-damper system.

In this section, we are interested in developing a
mathematical formulation relating the tribological
events at microscopic and the macroscopic scales
vibration response of a mass on a moving belt. An
example of the physical system is shown in Fig. 1
which consists of a mass m on a belt that moves at
constant speed, y. The mass is a rigid body, at time t
positioned at x(t) in a fixed frame of coordinates. It is
subjected to a normal applied static load F,, linear
spring-loading force Kx, plus damping force Cdx / dt.
The hg indicates the ini tial mean plane separation of the
two contacting rough surfaces corresponding to the
normal applied static load, F,.. The model doesn’t
assume a friction coefficient; therefore, friction is
instead obtained as a result of system’s dynamic
response that includes time-dependent forces at the
contact. The tangential -to-normal contact load ratio,
the classical definition of the friction coefficient, is
shown to depend on system response that in turn is
dependent on both the structural and contact
characteristics.

2. The Dynamic Model

The basic assumptions of the elastic model along with
the shoulder-to-shoulder contact model (Abdo and
Farhang 2005), and Abdo 2005 and (Abdo and
Shamseldin, 2005) are used in this study to account for
the elastic contribution of rough surfaces. Elastic contact
model has viewed the surface irregularities as identical
asperities with spherical summits differing only in their

heights that can be measured from the mean plane separa-
tion of two rough surfaces. The misaligned asperities per-
mit shoulder-to-shoulder contact. When two solid bodies
are brought into contact, the real contact area will only be
a fraction of the apparent macroscopic contact area. The
introduction of contact slope allowed the consideration of
normal and tangential components of the force.
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Figure 1. Schematics of block on a moving platform
and its free-body diagram h,

Referring to the free body diagram shown in Fig. (1),
the governing equation of the normal motion can be
expressed as

mﬁ —Fne =—Fna 1)

The governing equation of the tangential motion can be
expressed as

mX+Kx+Cx=F (2)

no where F,, is the normal force applied to mass M. F,.

is the normal contact force between the two contacting
rough surfaces. It is the scalar sum of the resisting and
assisting viscoelastic contact components

Foc = Fre + FnJg + Foy + FnJ\? @)

The terms Fgand F.; denote, respectively, the

resisting and assisting elastic normal contacts at the
asperity interference slopes (Bengisu et al. 1997,
Bengisu et al. 1999), as shown in Fig. 2. It remains a
challenge to determine whether there is a net elastic
influence on slidi ng surfaces. As shown in Fig. 2 , when
in static equilibrium, without the presence of an applied
tangential force, the contact force due to negative



64

The Journal of Engineeeing Research \ol. 5, No.1 (2008) 62-70

contact slope will be equal to that due to the positive
slope; therefore, the net tangential force on a surface is
zero. In the presence of an applied tangential force, the
equilibrium condition dictates that the net tangential
force to be the equilibrating force. Bengisu and Akay
(Bengisu et al. 1997) for example assume that the net
elastic tangential force, ie. those due to positive slopes
minus those due to negative slopes, is negligible. We
have chosen instead to include the factor of the friction
due to the positive or resisting slopes. In the presence
of an applied tangential load that is within the bounds
of the static friction force, the statistical summation of
asperity contacts corresponding to positive slopes is no
longer equal to that for contacts with negative slopes.
According to (Bengisu and Akay 1997) the assisting
and resisting contacts balance in the case of sliding,
with the expected conclusion that friction force is a
result of mainly adhesive forces. It is expected that as
tangential applied load is increased an d the tangential
contact loads due to positive -slope contacts continue to
rise while those due to negative -slope contacts
decrease. In the limiting case, or the so -called
maximum static friction, it is postulated that the load is
completely supported by p ositive-slope contacts. The
views forwarded by Bengisu and Akay and postulated
herein perhaps represent two extremes of what may
actually take place in a frictional contact. In the former,
the friction is assumed to be mainly due to the adhesive
forces whereas in the latter the friction force is assumed
to be borne solely by mechanical interaction of
roughness. In this way we can obtain a generic
formulation that can be easily adapted to any
assumption. The scenario for contact of asperities
when a maximum force occurs is shown in Fig. 3.

Likewise, F,yand F are those forces due to viscous

effects, ie. the rate dependent effect of interference at
positive and negative asperity slopes. The elastic and

viscous terms are a consequence of a viscoelastic
contact, but they are defined separately here for the

purpose of implementing the approximate analytical

description of each term derived later. The tangential

force, Fy, in Eq. (2) exerted through the frictional
contact on mass M. It is the scalar sum of the elastic
interactions of the collection through both resisting and

assisting viscoelastic contact components .

R=Fe +FRs + Ry + Ry (@)

2.1 Approximation of Elastic Contact Forces

The elastic normal contact force per unit area is the sum
of the resisting and assisting elastic normal contacts at the
asperity interference slopes

Fre = Fre + FnJg (%)

The analytical solution of the force in Eq. (5) may be
approximated as the product of the two terms as follows:

sliding direction

i | negative slope
positive slope

Figure 2. Asperity shoulder contact at positive and
negative interference slopes

sliding direction

Figure 3. Maximum possible static friction of
asperity

Fne = Dne fne (6)

where D, and f,,,, are a function of surface properties and
a function of dimensionless mean plan separation between
two rough surfaces, respectively. Two integrations are
involved in the contact force calculations. The function
D,. is defined in Abdo (2006) as

Dy :%E'g%/osaﬁé‘* @
a, ¢, E, 6 are the normalized radius of

curvature of asperity mean summit, asperity density,
composite modulus of the material and standard
deviation of asperity height distribution, respectively.
The integral part of the normal force per unit area is

where h is the normalized mean plane separation. The f,,

function consists of double integral function over r and s
domains. The integration of the contact function occurs
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over the range of asperity-offset misalignment, referred to
as r-integration. This integration is to account for the total
expected interference. The height sum of the rough sur-
face, s, is represented by a Gaussian probability density
function, ¢(s). Hence, in relating micron-scale events to
the resulting macro-scale expectations, two integrations
must be performed: firstly, the integration over possible
asperity offset and secondly the statistical integration over
all possible asperity height sums, s-integration, by imple-
menting a Gaussian probability function. The resulting
integral forms describing an elastic contact of rough sur-
faces are analytically non-integrable. Hence, their solu-
tion must be obtained numerically. This fact imposes seri-
ous limitations on their use in a dynamic analysis of a
mechanical system. To circumvent this shortcoming, we
developed approximate analytical functions for viscoelas-
tic contact of rough surfaces. Using an interactive search
involving dynamic plotting of the function, f,. isapprox-
imated using a considerably simpler function. The result
is an approximate function that depends on two independ-
ent variables, 3, h. Using the dynamic plotting technique,
f.e can be approximated by a product of exponential func-
tion of h and a polynomial function of 3. The piecewise
analytical solution of f,, is obtained at three different
intervals as shown in the following equations:

fret :[(_0-399+1-85)h+(—0389 —|—118B)] e—3h (9)

0<h<15

frea = [(—199+95388)h] e 25 w0
15<h<30

fres =|(~11496 + 320018 )h] e~ 4" "
30<h<45

The analytical solution of elastic tangential contact per
unit area is developed. The analytical approximation can
be described as the product of two functions: a function of
surface properties Dy, and a function of normalized mean

plane separation, h, between two rough surfaces, f,, as
follows:

Fie =D fi (12)

Note that the constants D, and D, are identical. f
is expressed as

o |24 2
fe = 'f / —dr |o(s)ds (13)

Using dynamic fitting technique, the piecewise analyt-
ical solution of the function fi, is approximated in closed-
equations for two intervals of h as

(5.3001 +023968 — 0000598 32 )1

o = , o—35h
n (1.694 +008478—000029
0<h<27
(14)
fioo = [(192.79 +916018—002498 3 )1] e 48N
27 <h<45
(15)

2.2 Approximation of Viscoelastic Contact Forces

The viscoelastic model is developed using the
Kelvin-Voigt’s constitutive equation relating stress to
strain. In Kelvin-Voigt model, the composite modulus
of the material E’and the loss modulus E, are used to
introduce the viscoelastic modulus differential operator

0
E'+E, —.
v ot

Therefore, a modified form of Hertz contact results in
which the modulus operator is used instead of the usual
elastic modulus

3
_ 4 / o 5 (16)
F = Sﬁ[E + E, 8t)w

where @ the interference between the two asperities and
is derived in (Abdo 2005; and Abdo et al. 2005) as

r2

28

_
r2 @an
1+—
48
Substitution of modulus operator in the Hertz equation
of contact and subsequent expansion revealed two forces.
One is an elastic force having the form encountered previ-
ously, and a second is viscous force defined by

L.o:[s—h—

3
Fuzi\/B—EviMQ (18)

3 ot

The viscoelastic properties are presented by combining
loss modulus with Young's modulus to obtain a differen-
tial operator on the interference, reminiscent of the
Kelvin-Voigt model. To develop an expression for the
normal and tangential components of the viscous forces,
the formulations of low to moderate contact force between
interacting asperities developed in Abdo (2005) and ver-
ified in Abdo (2006) are considered. The interacting
asperities are not assumed to occur only at the asperity
peaks, thus allowing the possibility of oblique contacts
wherein the local contact surfaces are no longer par-
allel to the mean planes of the mating surfaces. The
normal component of the viscous force can be writ-
ten so as to include the oblique contact
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L 0%

e Ot (19)

_ 4 =
F’U = Fn—c +Fy = 562 Ey

where s, is the interference slope defined by two
points of interactions with respect to the mean plane.

To simplify Eq. (19), we co nsider first the derivation of
the rate of change of the interference function,

3 1
Q(wQ ):ﬁwa (20)
ot 2

Since the interference, w, depends on the normalized
mean plane separation, h, and the tangential offset
between two asperities, r, its derivative with respect to
time may be written as

oo 9wy 9w, (21)

Utilizing Eq. (18) then

w=—

;h _ L +
482 4 12 46 ] 462
32
(22)

The total expected contact force per unit area intro-
duced in the (Greenwood and Trip 1971) is employed to
develop the total expected viscous normal contact force
per unit area as follows

Fov = 270% [ [ F3¢ (@,1) ¢ (s) rdrds 23)
S r

Utilizing Eq. (19) through Eg. (22), then Eq. (23) may
be written as

2,/3(s—h)
it 9 ’ 4 1
Fv =—=n"\BEmo [ |
nv o \/7 v a 0

1 2
r2 2 _s
[s—h—] we 2 rdrds
48

E, . C
where n, = E—", is the loss factor for the friction film or
material and o is the standard deviation of the surface
heights. The solution for the viscous contact normal
force consists of two parts, involving the rate change of

the normalized mean plane separation, h , and the rate
of change of the normalized tangential misalignment,
ie. the sliding speed, f=x—y. The total expected

viscous contact nor mal force, due to the interaction on
both shoulders, is

Fov = Fov + FnJ\?

. 25
= Dpy (fnvhh + fnvr r) (25

where D, is a constant term associated with h and

that depends on the surface parameters and material
properties. It is define as follows

Dy = —44/057 /B0 E"n0 (26)

f.n and f,, are the analytical functions for the normal-

ized viscous normal force. Using the dynamic plotting
technique, the piecewise analytical solutions for f,,,, and

f.vr Can be approximated by a product of exponential func-
tion of h and a polynomial function of £ as follows

fovht == ((—3759 450568 )h+ 0585 +12895 32",

fovh = 0<h<27
favhz = (—878+209698)he 5" 27 <h <45
27
. (5567 1028798 — 0000804 62) o—32h
nvrl = '
h -+ 2154 + 00958 — 0000206 32
four = 0<h<27

frurs = (285197 41401300389 62)1 e 40N97 <h<ys

(28)

In a similar manner, the solution of viscous tangential
contact force is developed. The viscoelastic tangential
force is

1
%BQ E, 0 9 2

fiis2 O (29)

The total expected viscous tangential contact force may
be written as

- +
Fv =Ry =

Fo = 270° Fyy (@,1) ¢(s) rdrds (30)

Utilizing Egs. (20) through (22) and Eqg. (29), then Eq.
(30) may be written as

00 24/3(5—h) 1
Fy = 4J05m0° Ay \BE "m0 ﬁ J i
0
(R
4B

) 1 &2

2 >

[s—h—r] [r]we 2 rdrds
431 |28

As before, the solution for the viscous contact
tangential force per unit area consists of two parts
involving h and r. Therefore, Eq. (31) may be written
as
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Fy =2Dy (ftvhH + fr f) (32)

where D,, is identical to D,,,. f,, and f,, are the analyt-
ical functions for the normalized viscous tangential force.
Using the dynamic plotting technique, the piecewise ana-
Iytical solutions for f,,, and f,,, can be approximated by a
product of exponential function of h and a polynomial
function of f as follows

. a2
6879 +03183(3 —0 000764 _
fvh1 = ( - P g )e 33h g<h<ar

h+179 +01167000033362

= fvho = (27995 13598800348 B2>e*4ﬁh 27 <h <45
(33)
and
. {ftm = (0708 +?jg;?h) e 35 g<h<2ry
fory = 9798 he 27 <h<45
(34)

2.3 The Model Analysis and Simulation

According to the dynamic model described in Fig. (1),
the dimensionless mean plane separation between two
surfaces is

h=h,—h (35)

where hy is the initial mean plane separation of the
contacting rough surfaces due to an applied normal
force and ﬁ(h/o) is the dimensionless displacement in

the normal direction.

mh. = Fna - Dne fne - Dnv (lcnvhH + fnvr f) (36)

M = —kx — 0k + Dy e + Dy (fnh + fiur ) (37)

Egs. (37) and (38) govern the motion of mass M in the
normal and tangential directions. The equations tie the
vibration behavior of the system to both structural and
contact properties of the friction interface.

The dynamic model was developed based on several
assumptions to simplify the study. The elastic normal and
tangential contact components are due to both positive
and negative interference slopes of an asperity as shown
in Fig. 2 and are added algebraically to provide their com-
bined effect.

There may or may not be a net resisting elastic tangen-
tial force when the two surfaces in relative sliding contact.
When this force exists, it is described as a fraction of the
maximum static friction force that is due to only positive
slopes.

The viscoelastic tangential forces are only produced by
the resisting contacts.

When h is negative, all viscoelastic components
exist and are additive for normal motion. The
responses of the dynamic model are studied at different
belt speeds and a dimensionless average radius of a
summit curvature, 3, to investigate the roughness
effect. The equation of motion was solved using a
Matlab Simulink program. Unlike in other publications
the friction force is accounted for as a result of
interaction of the rough surfaces and response of the
system. Therefore, the tangential -to-normal contact
ratio is a time-dependent variable based on structure
and contact characteristics of the system. Table 1
summarizes the parameters used. The simulations
include moderate applied load condition corresponding
to a high initial separation, h, = 3.5. The total range of
dimensionless mean plane separation is from 0 to 4.5
for contact force functions. The ( values considered
in the simulation are 100 and 140 to ensure low
plasticity index so that the asperity deformation will
remain predominantly elastic. For cases performed but
in order to reduce the length of the article only the
results of case 1 will be presented.

Table 1. Parameters from a steel sample

o(,um) 15 K, (N/m)  3.5x10°
n(mm‘2 ) 400 C(N.s/m) 21166
n, 0.001 h, 3.5
E’'(Gpa) 1131 B 100
M (Kg) 5 y (mis) 0.015
Case 1 F.2=0.002 F,

3. Results

The analytical solutions of normal to tangential
contact forces presented in this work are applicable to
dimensionless mean plane separation, h =0 to 4.6 and
the dimensionless average radius of asperity summit
curvature, 3 =10 to 140. The approximate analytical
solutions developed included the normal and tangential
contact forces due to viscoelastic effects. The purely
elastic term or rate dependent term is presented as a
product of two functions. The first corresponds to a
constant term for a given surface and the second
depends on the separation of mean surfaces as well as
tangential asperity offset. It suffices to evaluate the
approximate equations with respect to these functions.
Therefore the evaluations will only involve
fre s ftes frvh s fvn - fwr @nd - T, NOt the constant terms

Dre, Di, Dy, and Dy. The comparison between the
original integral function of the elastic normal and
tangential contact forces, f.,, f, asdepicted in Egs. 8
and 13, respectively, and their piecewise analytical
solutions  frey, freg and feg and figq, figg and figg
forthe rangesof h=0to 1.5, h=15t03.0and h=3.0
to 4.5 at different values of (3 are performed. The
comparisons at = 10, 40, 75, 100, 125, and 140
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show good agreements between the original and the
approximation functions throughout the ranges of (.
The relative percentage errors are between 9% and
10%. The comparisons of the original and viscous
functions for the same values of ( are also performed.
The estimation of viscous the functions shows a relative
percentage error between the original and the
approximation functions is less than 20%. This is
below the inherent uncertainty involved in surface
measurements that can climb to as much as 50%.
Comparisons between the original integral function of
the elastic normal contact force,  f,,, as depicted in
Eqg. 8 and its piecewise analytical solutions, f,e1, fpeo
and f,.5 for the ranges of h=0to 1.5, h=151t0 3.0
and h = 3.0 to 4.5, respectively, at 3= 100 and 140 are
shown in Fig. 4. As seen in the figures, the
comparisons show good agreement between the original
and the approximate functions for 3= 100 and 140.
The relative percentage error between  f,, and
frets fez and  fe5 is 9% at 3= 100 and 10% at
3=140. The comparison between the approximate
functions fi, and its analytical solutions and f,;, and
its analytical solutions for the ranges of h =0 to 1.5,
h =15t 3.0and h = 3.0 to 4.5, respectively, at §=
100 and 140 are shown in figures 5 and 6. The relative
percentage error between the original and the
approximation functions for both functions are 17% and
19%, respectively.

The results for case (1) are depicted in Fig. 7 through
Fig. 10. Figure 7a shows the trajectory of tangential
motion, tangential speed versus tangential displacement of
the mass m. The zoom-in view (Fig. 7b) shows decreas-
ing spiral, which represents a mass response of decaying
oscillation corresponding to a stable behavior. The trajec-
tories in Fig. 7 and the time history in Fig. 8 indicate an
initial decay followed by a growth in vibration up to a
level at which the vibration is sustained.

In case of the normal motion of the mass the structur-
al decay is absent consistent with the system's depiction in
Fig. 1 in which no structural stiffness or damping exists
for the vibration of mass M along the normal to the plat-
form. As shown in Fig. 9(a,b) the vibration is grown and
sustained at a value of 0.005 mm. The friction coefficient
defined as the tangential to normal friction shown in Fig.
10 depicts a steady state value of 0.026 for case 1.

4. Conclusions

This paper has addressed the dynamic effects of the sur-
face irregularities (roughness) as a result of mechanical
interactions. We have exhibited the cross-influence of tri-
bological interactions that occur at the micron-scale and
the dynamics of a mechanical system involving macro-
scale events. The utility of the contact theories in this
work was demonstrated through the dynamic analysis of a
simple mechanical system. We have considered a
mechanical system comprising a spring-damper-mass and

a platform in relative tangential and normal movements
while maintaining frictional contact between mass and
platform rough surfaces.

Elastic Normal Force, fne, at Beta= 100 & 140

+ Analytical at Beta= 100
Original at Beta= 100

4 Analytical at Beta= 140
Original at Beta= 140

Figure 4. Elastic normal force at = 100 & 140

Elastic Tangential Force, fte, at Beta =100 & 140

=

fte
O R N WA O N ®O© O
L e

+  Analytical at Beta= 100
Original at Beta= 100
&+ Analytical at Beta= 140
Original at Beta= 140

Figure 5. Elastic tangential force at § = 100 & 140

\iscoelastic tangential force, ftvh, with Beta =100 & 140

+  Analytical at Beta= 100
Original at Beta= 100
4+ Analytical at Beta= 140
Original at Beta= 140

EREEE G

alt

Figure 6. Viscoelastic tangental force at f = 100 &
140

The results pertaining to the prediction of contact forces
were used along with the addition of the viscoelastic
effects of contact. The approximate analytical solutions
were obtained for normal and tangential contact compo-
nents in viscoelastic contact. The term viscoelastic was
separated into components of elastic and rate-dependent
interactions. It was shown that the formulation of contact
forces allow the inclusion of frictional contact without the
necessity of including the friction/velocity relation phe-
nomenologically. No presumption of a friction coefficient
has been made. The friction force is accounted for as a
result of interaction of the rough surfaces. Rather the tan-
gential (friction) force has been a result of the considera-
tion of contact at the micron-scale level between two
asperities on the surfaces and the statistical summation of
this interaction to obtain the macrolevel expectation func-
tions. This led to a set of nonlinear ordinary differential
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Figure 7 (a, b). Trajectory of tangential motion and the zoom-in view, Case 1
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Figure 9 (a, b). Normal speed of the mass and the zoom-in view, Case 1
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Figure 10 (a, b). Load ratio (friction function), Case 1



70

The Journal of Engineeeing Research Vol. 5, No.1 (2008) 62-70

equations that directly relate the vibration of the system to
the surface parameters, mechanical system parameters and
physical parameters.

The study has shown the following:

e The tangential trajectories of the four cases showed
initial decay dominated by structural damping
followed by a growth in vibration up to a level at
which vibration is sustained that is due to the
interaction of surface asperities of the moving
platform and those of the structure mass.

e The vibration of the normal direction of the four
cases grow to a level at which it is sustained that is
due to frictional interaction between the platform
surface roughness and that of mass M and the
absence of the structural decay.

e The low tangential to normal contact load ratio of
the four cases is due in part to the relatively low
surface roughness in the present study in order to
ensure the predominance of elastic interaction at
the contact.
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