
Journal of Engineering Research, 2023, 20(2),113-122

 DOI:10.53540/tjer.vol.20iss2pp113-122

 Reinforcement Learning-Driven Decision-Making for
Live Virtual Machine Migration in Fog Computing

Shahd Alqam*, Nasser Al- Zidi, Abderrezak Touzene, and Khaled Day
College of Science, Sultan Qaboos University, Muscat, Oman

ي :الملخص

ف أساسية آلية هي اضية الافتر المحاكاة إن
ي كفاءة

ي تساعد ف

الحوسبة الضبابية، حيث تتيح المرونة التر
ي بيئة الحوسبة الضبابية.

ولذا الموارد لتحقيق مرونة عالية ف

اضية) (من جهاز إلى آخر. VMsيلزم نقل بعض الأجهزة الافتر
ي إذ يعمل

اض ويمكن تحقيق ذلك عن طريق نقل الجهاز الافتر
إنجازه. ي

العمل والتأختر ف التوقف عن ي على تقليل وقت
وف

هذا الصدد ناقشت العديد من الدراسات الحالية نقل الأجهزة
ي بيئة الحوسبة الضبابية، إلا أن هذه

اضية أثناء عملها ف الافتر
الدراسات يتخللها بعض نقاط الضعف مثل: النقل المسبق لـ

بناءً على اضية الافتر أو الأجهزة ، المستخدمير تنبؤات حركة
بناءً على حمولة الأجهزة فقط، مما يسبب مشكلة النقل المبكر

المتأخر. إلى أو الضبابية الحوسبة بيئة ي
ف النظر يُفضل كما

بيئة لأنها اضية؛ الافتر الأجهزة نقل لتقرير عوامل عدة
ديناميكية وتحيط بها العديد من العوامل. ومن هذا المنطلق
الاعتبار عوامل متعددة ي

يأخذ ف نظام لتطوير الحاجة تظهر
ي أم لا.

اض وللتمكن لتقرير ما إذا كان سيتم نقل الجهاز الافتر
الدراسة المتأخر تطرح هذه أو المبكر النقل من حل مشكلة

ا لنقل
ً
ي بيئة الحوسبة الضبابية عن طريق VMنهجًا جديد

ف
هرت التجارب أن تطبيق التعلم المعزز لاتخاذ القرار. ولقد أظ

التطبيقات ذات انتقال يقلل بشكل كبتر من زمن النهج هذا
ح هذا، المسمى الأهمية الزمنية. بالإضافة إلى أن نظامنا المقتر

VM_MIG الوصول النماذج الأخرى من حيث زمن ، يفوق
٪ ، وقد أثبت هذا أنه من الأفضل أخذ عوامل 77.5بحوالىي

ي
ف اضية الافتر الأجهزة نقل لتحديد الاعتبار عير ي

ف متعددة
ذات التطبيقات ي

ف فعال بشكل الضبابية الحوسبة بيئة
 الأهمية الزمنية لتقليل زمن الوصول.

ABSTRACT: Virtualization is an essential
mechanism in fog computing that enables elasticity
and isolation, which in turn helps achieve resource
efficiency. To bring high flexibility in a fog
environment, migration of virtual machines from
one node to another is required. This can be achieved
by live virtual machine migration to reduce
downtime and delays. Multiple existing studies have
discussed live virtual machine migration in a fog
environment. However, these studies have some
limitations, such as pre-migrating the virtual
machines based on mobility prediction only or based
on the load only, which causes an issue of late and
early handover. Due to the dynamic nature of fog
environments, VM migration decisions require
consideration of multiple factors. Hence, there is a
need to develop a system that considers multiple
factors to decide to migrate a virtual machine or not
to solve the issue of early and late handover. This
study proposes a novel approach to live virtual
machine migration that applies reinforcement
learning for decision-making. Experiments show
that the proposed approach significantly reduces the
latency of time-critical applications. The proposed
system, outperforms the existing systems in terms of
total average reward. The system outperformed
the mobility-only-based system by 97% when tested
with two fog nodes and by 80% when tested with
sixteen fog nodes in terms of average reward.
Further, the proposed system outperforms the load-
based system by 50% and 75% when the
environment consists of two fog nodes and sixteen
fog nodes, respectively. This proved that considering
multiple factors in deciding virtual machine
migration in a fog environment can be effectively
applied in time-critical applications to reduce
latency.

Keywords: Latency reduction, live virtual machine migration, load balancing, reinforcement learning,
Reinforcement Learning algorithms, reward mechanism

، موازنة الحمل، تعزيز التعلم، خوارزميات تعزيز التعلم، الكلمات المفتاحية: ي المباشر
اض تقليل وقت الاستجابة، نقل الجهاز الافتر

 .التحفتر يةلآ

Corresponding author's e-mail: s125248@student.squ.edu.om

mailto:s125248@student.squ.edu.om

Journal of Engineering Research, 2023, 20(2),113-122

114

INTRODUCTION

According to (Giri et al., 2017), fog computing is
an architecture that uses one or more near-edge
devices to carry out some amount of storage,
communication, control, configuration, and
management of the cloud. It does not substitute
the cloud but extends its functionality near the
edge of users. Fog means "a cloud closer to the
ground" and is a new technology that extends - but
doesn't substitute - the cloud computing services
to the end users (Mouradian et al., 2018). Fog
provides different facilities and services to the
users, i.e., latency-aware, geo-distributed, and
mobility-aware services.

Fog computing was initially designed and
introduced to support latency-sensitive
applications. This includes Smart City
applications, Intelligent Transportation Systems,
Augmented Reality, Healthcare, Tele-
Surveillance, Smart Grid, Smart Agriculture,
Smart Waste Management, Smart Water
Management, Smart Retail stores, etc. (Haouari et
al., 2018) (Naha et al., 2018),(Yi et al., 2016),(Hu
et al., 2017).

Virtualization plays a crucial role in efficient
resource allocations to end users in fog computing
scenarios. However, improper placement of
virtual machines on physical machines can lead to
performance degradation(Akintoye & Bagula,
2019). In the context of a fog scenario, the
importance of considering performance and
minimizing downtime becomes even more
critical(Yi et al., 2016). Hence, it could be
important to move the virtual machines from one
fog node to another to ensure a smooth transition
and no disturbance to the real-time
applications(Zhou et al., 2019; Bittencourt et al.,
2015; Govindaraj & Artemenko, 2018; Puliafito et
al., 2019; Rodrigues et al., 2017; Roig et al., 2019;
Rosário et al., 2018; J. Wang et al., 2020; F. Zhang
et al., 2018).

In the area of fog computing, determining
whether or not to migrate virtual
machines/services from one node to another is a
critical decision(Osanaiye et al., 2017), and the
research community and industry have developed
various mechanisms to make this decision
effective based on different factors and
parameters(Agarwal et al., 2016; Filiposka et al.,
2018; Govindaraj & Artemenko, 2018; Habibi et
al., 2020; Live Virtual Machine Migration to
Support Real-Time IoT Applications in
Heterogeneous Fog Environment V3, n.d.;
Machen et al., 2018; Rahbari & Nickray, 2019;
Zhu et al., 2017). Several studies have addressed
this issue by developing different migration
strategies based on user mobility, load balancing,
energy saving, etc. In this context, reinforcement
learning can be applied to make decisions more
effective.

In previous studies, researchers explored the
live virtual machine migration in the fog
computing environment. Some studies
(Goncalves et al., 2018) and (C. Zhang & Zheng,
2019) only migrated virtual machines in advance
based on mobility predictions. As a result, it is
difficult to make an accurate decision on whether
or not to migrate the VM based on mobility
prediction only, as the fog environment is

dynamic and the users' movements cannot be
accurately predicted, which could lead to the issue
of early handover and wrong decision-making.
Other studies consider the load as a factor in
deciding the migration of the VMs and only
migrate the VMs when the machines become
overloaded (Tang et al., 2018). As a result, this
might lead to the issue of late handover and may
cause a disturbance to the real-time application
and hence increase the delay.

Load and mobility are critical factors when
deciding on VM migration because they are
among the most influential factors that impact the
performance, resource utilization, and latency
requirements of real-time applications, as
mentioned before.

In a fog environment, the joint consideration
of both mobility and load factors with threshold
values significantly impacts the decision-making
process of whether or not to migrate the VMs.

However, previous studies have applied
conventional algorithms as well as artificial
intelligence-based algorithms to design their
model. The study (C. Zhang & Zheng, 2019)
proposed deep Reinforcement Learning in a
Mobile Edge Computing system to decide the
migration of VM. In the study (Basu et al., 2019),
the authors applied RL to utilize the load details
as a parameter to determine whether or not to
migrate the VMs. RL agents monitor the
machines' loads in the environment and decide on
the migration. (Goncalves et al., 2018) I proposed
using Integer Linear Programming (ILP) to find
out the movement of the users and decide the
migration accordingly.

For delay-sensitive applications in a fog
environment, it is important to consider the high
dynamic level of the environment and the
complexity as a fog environment is surrounded by
many factors. Delay is critical to the real-time
application, and hence, the algorithms used to
decide the VM migration should be carefully
chosen and designed to achieve the possible
reduction in latency and response time. It is worth
noting that the fog environment is dynamic,
consists of different types of devices, is highly
affected by the users' mobility, and the load factor
is critical in making decisions(Hammoudeh Rlr,
2018). Therefore, it is suitable and advised to
design a model to decide the VM migration while
applying RL algorithms. In Reinforcement
learning, the system doesn't have a set of data to
train, but rather, it learns by trial and error (Han,
2018). The system learns from the interaction
with the environment to achieve the goal, which is
usually maximizing the reward in the long term.
RL is suitable for solving complex but narrow
problems where the dynamic and large
environment is not a problem and the input of the
surrounding area is not expected, but there is a
goal to be achieved. Hence, in this paper, we
propose a reinforcement learning-based approach
to improve the decision-making about whether or
not to migrate virtual machines. This proposal
aims to solve the issue of early and late handover
of virtual machines. This is done by combining
mobility and load factors into a single
comprehensive model to reduce disruptions to
time-critical applications. By combining both
factors in one model, the RL can make a more
informed and context-aware decision.

115

Table 1. Comparison between some existing studies and our proposed research.

Reference study Timing of the designed solution Decision to be taken
Reactive Proactive When Where

(Bao et al., 2017) √ √
(Goncalves et al., 2018) √ √ √
(C. Zhang & Zheng, 2019) √ √
(Basu et al., 2019) √ √
Proposed Research √ √

This comprehensive approach can lead to
improved performance optimization and
reduction of latency for time-critical applications.
Further, the model can become more adaptive to
the changing conditions in the fog environment
and can adjust the VM migration decision
accordingly. This model enhances the
performance, adaptability, and synergy between
the incorporated factors. The rest of this paper is
organized as follows: Section 2 provides an
overview of the related work. Section 3 presents
the system architecture and model. In section 4,
the problem formulation is outlined. The RL
algorithm is detailed in section 5. Section 6
illustrates the evaluation of the proposed model.
The paper concludes in section 7, followed by a
discussion on limitations and future work in
section 8.

RELATED WORK

A study (Bao et al., 2017) proposed a framework
to support smooth handover between the fog
nodes in a timely manner. In this study, the
authors are following the principle of "Follow me",
similar to follow me cloud, which aimed at a
smooth migration from one data centre to another
(S. Wang et al., 2018). This proposal results in a
reduction in the service

Interruption time and downtime. The study
guarantees service continuity and reduces the
latency during handover. It proactively makes the
decision to migrate to the virtual machine.
However, the shortcoming of this research is that
this method is good in scenarios in which the
users' movement and the movement are fixed.
There is no specific algorithm used in this
proposal, only a framework to measure the
strength of the signal in the access point and then
migrate it. Further, the study considers only one
factor in deciding following the user movement
and not the load of the source and destination
machines, which might lead to wrong decision-
making.

A different approach is used in the study
(Goncalves et al., 2018), where the proposal used
Integer Linear Programming (ILP) to decide when
to migrate the VMs. It takes the mobility
prediction and starts the process 5 minutes before
the user's movement. They used ILP to optimize
decision-making. The objective functions are 1)
Maximizing the accepted requests and 2)
Minimizing the latency. However, the limitation
of this study is that it proactively migrates the VM
based on mobility prediction. This might lead to
early handover and lead to a wrong decision.

The study doesn't consider another factor in
deciding when to migrate, which might also lead
to inappropriate decisions as the fog environment
is surrounded by multiple factors.

A study (C. Zhang & Zheng, 2019) proposed deep
Q-network for task migration in Mobile Edge
Computing to decide whether to migrate the
virtual machine. This research applies the
reinforcement learning algorithm to learn the
environment and then make the decision. In this
research, mobility is the main trigger for
migration, where a fog node master learns the
status of the environment, takes action
accordingly, and then gets a minimum cost value.
This study shows better improvement compared
to conventional algorithms, however, but it only
considers one factor, which might lead to
inappropriate decisions in the fog context.

In the study (Basu et al., 2019), the authors
considered the load factor in making migration
decisions without considering a threshold, and
they migrated virtual machines after the fog node
was already overloaded. RL can utilize the load
details as a parameter to determine whether or
not to migrate the VMs. RL agents can monitor
the machines' loads in the environment and
decide on the migration. Considering the load
factor while adopting RL, facilitating the load
balancing, and
distributing the workload. It also helps in
improving efficiency. However, waiting for the
system to be overloaded and then deciding to
migrate may cause an issue of late handover and
hence incur a delay.
The following table summarizes the existing
studies in this context in comparison with the
proposed research.

SYSTEM MODEL

The proposed system is designed for a square
area. The area size is assumed to be 50 m × 50 m.
This site has been chosen because the coverage of
the network in the fog nodes could reach a
maximum of 60 meters. So, to ensure that all fog
nodes are connected, this area size is chosen.
Before discussing the model, it is important to
define some of the notations and variables used in
the system model and problem formula. Table 2
defines the important notations and their
abbreviations:

Journal of Engineering Research, 2023, 20(2),113-122

116

Table 2. List of notations applied in designing the
system model.

Symbol The meaning
ℱ fog node set

𝐽 number of the fog nodes

𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 represents a 𝑗𝑡ℎ fog node with

latitude and longitude positions of
k and l, respectively, ranging from
1 to I.

𝒱 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
)

The virtual machines set in fog
node j

𝑄 number of virtual machines in one
fog node

𝑣
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
),𝔮

𝑗
 Represents the is the 𝔮𝑡ℎ VM

running on the fog node 𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗

𝒰 Set of users

𝑀 number of users
UI ith user (𝑖 ∈ [1 𝑚])

𝐿𝑎𝑐 , 𝐿𝑜𝑐 Represents the latitude and
longitude coordinates of the user's
current location, respectively.

𝐿𝑎𝑛, 𝐿𝑜𝑛 Represents the latitude and
longitude coordinates of the user's
new location, respectively.

𝐷((𝐿𝑎𝑐 , 𝐿𝑜𝑐),
(𝐿𝑎𝑛, 𝐿𝑜𝑛))

The distance that the user will
move from its current location
(𝐿𝑎𝑐 , 𝐿𝑜𝑐) to its new location
(𝐿𝑎𝑛, 𝐿𝑜𝑛).

𝒞𝐹𝑖
the capacity of the ith fog node

𝒱𝒫𝑖
the total number of virtual CPUs in
fog node i

𝒫𝑖 the number of Physical CPUs in the
fog node i

𝐶𝑖 the total cores in each physical CPU
of fog node i

𝑣𝐶𝑃𝑈 the number of assigned virtual
CPUs per VM

ℒ𝐹𝑖
The load of the ith fog node

𝔯𝐶𝑃𝑈
𝑖 the number of virtual CPUs

running on fog node i
(𝒯𝒸) total cost

(ℳ𝒸) migration Cost

(𝒞𝒸) computation Cost

𝑆𝑡 state-space at a time 𝑡
ℛ the reward of the system

𝑇𝐻ℒ𝐹𝑖
 the threshold of the load

In this model, the set of 𝐽 fog nodes is assumed
with locations given by their longitudes and
latitudes in a square grid with grid cells kth row
and 𝑙th column ranging from 1 to I:

{(𝐿𝑎𝑘
𝑗
, 𝐿𝑜𝑙

𝑗
): 𝑘, 𝑙 = 1,⋯ , 𝐼 } for the 𝑗𝑡ℎ fog node. It is

represented in equation 1.
Each fog node is equipped with GPS to define its
location in correspondence to the latitude and
longitude values. Thence, the set of fog nodes is
represented as

ℱ = {𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
∶ 𝑗 = 1,⋯ , 𝐽; 𝑘, 𝑙 = 1,⋯ , 𝐼 }. (1)

In other words, ℱ is a collection of 𝐽 tuples, where
each tuple consists of a pair of latitude and
longitude values indexed by 𝑘 𝑎𝑛𝑑 𝑙, where

𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 represents a 𝑗𝑡ℎ fog node with latitude

and longitude positions of k and 𝑙, respectively,
ranging from 1 to I.

For example, 𝐹(6,7)
5 represents the fifth fog node,

which has a latitude value of 6 and a longitude
value of 7.
Each fog node hosts a set 𝑄 virtual machines of all
have the same size and configuration, denoted by
equation 2.

𝒱 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
) = { 𝑣

(𝐿𝑎𝑘
𝑗
,𝐿𝑜𝑙

𝑗
)𝔮

𝑗
∶ 𝔮 = 1,… , 𝑄 }. (2)

where 𝑣
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
),𝔮

𝑗
 Represents the is the 𝔮𝑡ℎ VM

running on the fog node 𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 And 𝑄 is the

total number of the VMs running on that fog node.
Hence, the above representation represents all
VMs running on the specific fog node.
Each fog node has a controller which handles the
details of fog nodes in a certain coverage area.
Let's assume each fog node covers 60 meters only
in all directions. This assumption is based on the
fact that wireless coverage can vary between fog
nodes, but an average cover range of 60 meters is
typical for fog nodes, which have a range of
around 100 meters. However, the wireless signal
could be weakened as they travel through the air
and would become too weak beyond a certain
distance. Hence, by setting the coverage area of
each fog node to 60 meters, it can be ensured that
the fog nodes are close enough to communicate
effectively to provide enough coverage to serve the
needs of the users.

The controller in each fog node senses the
environment and maintains details about the
environment, including the load, users'
information, and location details. There are 𝑀 ≤
𝑄 users. Each user may be connected to at most
one of the virtual machines at any point in time,
as shown in equation 3.

𝒰 = {𝑢(𝐿𝑎𝑠,𝐿𝑜𝑟)
(𝑗,𝑘,𝑙,𝔮𝑖) : 𝔮𝑖 = 1,⋯ , 𝑄; 𝑖 = 1,… ,𝑀} (3)

In this notation, U represents the set of 𝑀 users.
𝐿𝑎𝑠 , 𝐿𝑜𝑟 Represent the latitude and longitude
coordinates of the user's location, respectively.
𝑗, 𝑘 𝑎𝑛𝑑 𝑙 represent the fog node where the user is
connected, and 𝑗 is the index of the fog
node, 𝑘 𝑎𝑛𝑑 𝑙 are the indices of the virtual
machine within the fog node. 𝔮𝑖 Represents the
index of the virtual machine that the user is
connected to, which ranges from 1 to 𝑄. In other
words, 𝒰 is a set of 𝑀 tuples where each tuple
contains information about the user's location
and which virtual machine they are connected to
(if any).
Each mobile user is equipped with a GPS system
to define its location. It is assumed that all mobile
users are connected to fog nodes using wireless
connections. It is also assumed that all fog nodes
are connected using wireless connections. The
user will move a distance ((𝐿𝑎𝑐 , 𝐿𝑜𝑐), (𝐿𝑎𝑛 , 𝐿𝑜𝑛))
from its current location (𝐿𝑎𝑐 , 𝐿𝑜𝑐) to its new
location (𝐿𝑎𝑛 , 𝐿𝑜𝑛).

117

3.1 Fog Node Structure
The following defines the structure of the fog

nodes:

𝒞𝐹𝑖
The capacity of the fog node: In our
proposed scenario, the number of virtual
machines as a parameter to find the
capacity of the fog node is taken by
ignoring other factors and processes that
need to be run on the fog node.

Hence, the capacity is defined as the total
number of VMs that can be run on the
machine. It is calculated as the number
of processors and cores available in the
fog node assigned to the virtual
machines. It is assumed that all VMs
have the same CPU allocation.

𝒱𝒫𝑖 = 𝒫
𝑖 × 𝐶𝑖 (4)

Where 𝒫𝑖 Is the number of Physical

CPUs in the fog node, i and 𝐶𝑖 Is the total
number of cores in each physical CPU of
fog node i. Hence, the capacity of a fog
node is calculated as follows:
𝒞𝐹𝑖 = 𝒱𝒫𝑖 / 𝑣𝐶𝑃𝑈 (5)

Where 𝒱𝒫𝑖 represented the total number

of virtual CPUs in fog node, i and 𝑣𝐶𝑃𝑈 Is
the total number of assigned virtual
CPUs per VM.

ℒ𝐹𝑖
 The load of the fog node: It is the

number of currently running VMs.
However, for simplicity, this calculation
is done by ignoring the other processes
running in the fog node and assuming
that the only load of the fog node is the
virtual machine's load.

ℒ𝐹𝑖 = 𝔯𝐶𝑃𝑈
𝑖 /𝑣𝐶𝑃𝑈 (6)

Where, 𝔯CPU
i represents the number of

virtual CPUs running on fog node i and
𝑣𝐶𝑃𝑈 Represents the assigned virtual
CPUs per VM.

Initially, when the environment is initiated,

each fog node exchanges the information
messages regarding its location index values (La
and Lo) with all nodes in the area. At startup, the
fog nodes will acquire the values of their location
positions in terms of latitude and longitude. It is
assumed that all fog nodes are fixed in their
locations. Then, the fog nodes will exchange

information. The following section explains how
the nodes exchange information.

VM MIGRATION PROBLEM
FORMULATION

The migration of virtual machines has the benefit
of reducing the latency of real-time applications.
However, if a wrong/late decision is taken and an
unsuitable migration strategy is applied, this may
result in a longer time to accomplish the real-time
applications. Therefore, with the objective of
finding the best strategy, Reinforcement Learning
is applied to reach the optimum decision. Taking
the load, the location of the fog nodes and the
movement of the users into account, the problem
can be formulated as follows:
Total Cost (𝒯𝒸): The total cost consists of two
parts: The Migration Cost ℳ𝒸 and the
Computation cost 𝒞𝒸 .
Migration Cost (ℳ𝒸): It is the delay incurred by
the network to migrate the virtual machine. This
includes the transmission delay. 𝒯𝑑𝑒𝑙𝑎𝑦 and the

signal delay 𝒮𝑑𝑒𝑙𝑎𝑦 . The processing delay of the
VM transfer is ignored as the main concern is to
calculate the delay incurred by the media of
transfer and the VM size and as the processing
delay is minimal due to the use of high-speed
processors. It can be calculated as:

𝒯𝑑𝑒𝑙𝑎𝑦 =
𝑣𝒮

ℬ𝓌
 (7)

Where, 𝑣𝒮 is the size of the virtual machine (in
bits) and ℬ𝓌 It is the bandwidth of the network
(in bits per second). The signal delay can be
calculated as:

𝒮𝑑𝑒𝑙𝑎𝑦 =
𝒟𝑈𝑖

𝑣
 (8)

Where, 𝒟𝑈𝑖 Is the distance between the user's new
location to the source fog node or to the
destination fog node based on user movement,
which is measured in meters, and 𝑣 is the media
speed, which is in this case measured in
meters/second.
Hence, the migration cost is
 ℳ𝒸 = 𝒯𝑑𝑒𝑙𝑎𝑦 + 𝒮𝑑𝑒𝑙𝑎𝑦 (9)

Computation Cost (𝒞𝒸): It represents the cost
of the computational resources required to
perform the migration process. This also has a
positive relationship with the load. If the load is
high, the computational cost inside a particular
fog node will be high and vice versa. It is
calculated as:
𝒞𝒸 = ℒ𝐹𝑖 × 𝑃𝑠 (10)

where ℒ𝐹𝑖Is the load of the fog node and 𝑃𝑠 It

Algorithm 2: Exchange the
information between the fog nodes.

1. Begin the procedure
2. For each fog node F in the system:
3. Calculate the Euclidean distance

 between F and every other fog
 node in the system

4. Store the distance in M
5. If M is less than or equal to 60 m
6. Add the distance value to F's

 memory
7. End If
8. End For
9. End the procedure

Algorithm 1: Calculate the location
index of each fog node (Environment
Initialization).

1. Initialize ()
2. Begin
3. For j = 1 to J
4. Initialize La and Lo location values

for fog node Fj
5. Store location in each node controller
6. End For
7. End

Journal of Engineering Research, 2023, 20(2),113-122

118

is the processing speed of the node in terms of
VMs/sec, which is the inverse of the processing
time of each VM. Hence,
 𝒯𝒸 = ℳ𝒸 + 𝒞𝒸 (11)
In this case, the computational cost must be
compared to whether the VM is not migrated and
if it is migrated to a destination fog node.

The system evolves over time into a set of
infinite episodes Ʈ = {1, 2,…, ∞}. At every episode
(i.e., time t), the user 𝑢𝑖 will be connected to one

fog node (say F𝑗). Let us assume that the fog node

where the VM will be migrated is F𝑗′. The system
state is defined using two parameters: The load
difference state (𝐿𝐷) between a pair of fog nodes

(F𝑗, F𝑗
′
), and the distance state for the user 𝑢𝑖

(𝐿𝐶𝑖) to the source fog node and to the destination
fog node. LD (i.e., the load difference state
between 𝐹𝑗and 𝐹𝑗′ This can be defined as follows:

𝐿𝐷 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
, 𝐹
(𝐿𝑎𝑘′

𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
) =

{

 0, 𝑖𝑓 𝐿𝐹

(𝐿𝑎𝑘
𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
> 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

1, 𝑖𝑓 𝐿𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
= 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

2, 𝑖𝑓 𝐿𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
< 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

 (12)

Further, 𝐿𝐶𝑖 (i.e., the distance state for the user 𝑢𝑖)
will be defined based on the distance between the

user's new location and the fog nodes F𝑗 and F𝑗′.
Therefore, a new parameter is introduced to
represent the user's new location, denoted as 𝑢′,
which consists of the latitude and longitude values
of (𝐿𝑎𝑠′ , 𝐿𝑜𝑟′). Hence, 𝐿𝐶𝑖 This can be expressed
as follows:

𝐿𝐶𝑖 = {

0, 𝑖𝑓 𝑑(F𝑗, 𝑢′) > d(F𝑗
′
, 𝑢′),

1, 𝑖𝑓 𝑑(F𝑗, 𝑢′) = d(F𝑗
′
, 𝑢′),

2, 𝑖𝑓 𝑑(F𝑗 , 𝑢′) < d(F𝑗
′
, 𝑢′)

 (13)

The overall state of the system at time t can be
written as:
𝑎𝑛𝑑𝑆𝑡 = {(𝐿𝐷, 𝐿𝐶𝑖)}, where 𝑆𝑡is state space at time
𝑡 and,
- 𝐿𝐷 = 0, 𝑜𝑛𝑒 𝑜𝑟 2, are the possible states of the

load difference between fog node pairs (F𝑗,

F𝑗
′
)

- 𝐿𝐶𝑖 = 0, 1 𝑜𝑟 2 are the possible states of the
distance for the user 𝑢𝑖. It is defined based on
the distance between the user's new location

and the fog nodes. F𝑗 and F𝑗′ .
Hence, the possible state space could be re-
written as:

𝑆𝑡 = {

(0,0), (0,1), (0,2)

(1,0), (1,1), (1,2)

(2,0), (2,1), (2,2)

}

At any time 𝑡, the fog node controller, which in the
proposed model represents the reinforcement-
learning
an agent will take action to migrate or not. The
action is denoted. 𝐴𝑡 ∈ {0, 1}. A value of one
means migrate, and a value of zero means do not
migrate. Therefore, the system will generate a

state-action pair. (𝑆𝑡 , 𝐴𝑡).
Reward: This research aims to reduce the

total cost of accomplishing tasks for mobile users
and maximize the reward. The reward can be
defined as the minimal cost of accomplishing the
tasks, which is defined in this scenario as the total
cost. (𝒯𝒸). The reward is represented as follows:

ℛ = 1
𝒯𝒸
⁄ (14)

There is an inverse relationship between the

reward and the total cost. If the total cost is high,
the reward is less and vice versa.

ALGORITHM AND AGENT TRAINING

To start with, the system proposed in this paper
will be referred to as VM_MIG from now on.
Next, the load threshold will be defined. The load
threshold is the percentage of the fog node
utilization that should not be exceeded. If the load
threshold is exceeded, virtual machines should be
migrated. A load threshold is necessary to prevent
fog nodes from becoming overloaded and
negatively impacting the system's performance. If
a fog node's load exceeds a certain threshold, it
may begin to delay responses, resulting in
degraded user experience and decreased system
performance. By setting a threshold for the load
on a fog node, the system can be designed to
migrate virtual machines to other nodes before
the load becomes too high. This can help balance
the load across the fog nodes, preventing any node
from becoming overloaded and avoiding
performance degradation. Additionally, setting a
threshold can help optimize resource utilization
and reduce energy consumption by ensuring that
nodes are not operating at higher than necessary
loads. The values range from 0% to 100%. If the
threshold is set too low, it can lead to degraded
system performance and increased overhead due
to VM migration. On the other hand, setting the
threshold too high can cause the fog node to delay
the migration, potentially affecting the experience
of users running real-time applications. In this
proposed scenario, the threshold of the load for
any fog node is set as follows:

THℒ𝐹𝑖
=

1

2
𝒞𝐹𝑖 (15)

The following algorithm describes how the system
will learn whether to migrate or not based on the
Reinforcement Learning setup:
Before looking at the algorithm, some set of
terminologies are defined in table 3.

EVALUATION RESULTS

In this section, the results of a simulation-based
performance evaluation to assess the effectiveness
of the proposed algorithm are presented and
compared with existing algorithms. The
simulation was implemented in the MATLAB
R2021b environment, which includes
Reinforcement Learning Applications that
facilitate the simulation of reinforcement
learning-based research.

119

6.1 Experiments Settings
In this evaluation, a comparison of the proposed
algorithm (VM_MIG) with the following
algorithms is done:
1. When no migration decision is made, this is

done because the VM_MIG system must be
tested against the systems that do not make
any migration decision based on system
efficiency.

2. The proposed model is compared with the
study (C. Zhang & Zheng, 2019), where the
authors use only the mobility factor to decide
about migration. This is done because this
study considers VM and task migration in an
environment similar to ours, which is edge
computing, by adopting RL.

3. The proposed system is also compared to the
study (Basu et al., 2019), where the authors
use the load factor to make migration
decisions without considering a threshold.
They migrate virtual machines after the fog
node is already overloaded. The proposed
study decides the migration based on multiple
factors, including mobility and load, while
considering a threshold value of the load
before deciding on the migration.

Table 3.List of notations used in Reinforcement

Learning Algorithm.
Notation Definition

Capacity
(N)

A number

replay
memory
(M)

Replay Memory in the RL setting
allows the agent to learn from past
experiences instead of only
learning from its most recent
experiences.

ℚ value
with 𝜃
weight

Q-value function with its
parameters initialized to the value
of θ. The Q-value function is
updated during the learning
process to better approximate the
true Q-values for different states
and actions.

ℚ̅ value

with �̅�

Target Q-value function. This is a
copy of the Q-value function that is
updated less frequently, typically
after a certain number of
iterations.

γ A discounted rate is a factor used
to balance the importance of
immediate rewards versus future
rewards. It is represented by the
symbol γ (gamma) and is a value
between 0 and 1.

learning
rate 𝛼

It controls the rate at which the
agent learns from new experiences
and determines how much weight
should be given to new
information.

exploration
rate 𝜖

The probability that an agent will
choose a random action instead of
the action that it believes to be the
best based on its current
knowledge or policy.

Algorithm 3: Virtual Machine
Migration in Fog Environment Using
Reinforcement Learning

1. Initialize a replay memory (M) to

capacity ℕ
2. Initialize ℚ value with 𝜃 weight,

3. Initialize the target ℚ̅ value to �̅�
4. Initialize ᴓ value randomly.
5. Initialize γ
6. Initialize learning rate 𝛼
7. Set update steps U,
8. Set Batch size
9. Set exploration rate 𝜖
10. The set decay rate of 𝜖
11. While t ≤ ∞ :
1. Generate random number ᴓ from [0,1]
2. Calculate THℒ𝐹𝑖

According to eq. (10)

3. If ℒ𝐹𝑗 reaches, THℒ𝐹𝑗
Then:

4. Calculate 𝐿𝐶𝑖

5. If 𝑑(F𝑗 , 𝑢′) = d(F𝑗
′
, 𝑢′) Then:

6. Calculate ℒ𝐹𝑗′ According to eq. (3)

7. If ℒ𝐹𝑗 > ℒ𝐹𝑗′ Then:

8. Migrate the VM
9. Else:
10. Calculate the total cost of migration.

11. If the Total Cost of migration is higher

12. than the total cost of no migration, then:

13. Don't Migrate VM
14. Else:
15. Migrate VM
16. End If
17. End If
18. End If
19. End While

Table 4 shows the configuration parameters of the
simulation process.

 Table 4. The configuration parameters for the
simulation

Parameter Value
Sample Time 5 seconds
Maximum Episodes 200, 500, 1000
Maximum Episodes
Length

100 time-steps

α – Learning Rate 0.01

γ – Discounted Factor 0.99
Batch Size 64
ε- start 1

ε- min 0.01

ε- decay 0.005
Memory Size
(experiences)

10000 experiences

These values have been selected based on
different factors: The learning rate α is an
important factor as it approximates a function to
best map the inputs to outputs in Neural
Networks. However, a large learning rate will
make the system faster. However, this is not our
target, as the proposed model is concerned with
future rewards and not immediate rewards.
Hence, the system is tested with a small learning

Journal of Engineering Research, 2023, 20(2),113-122

120

rate, so the system will provide more optimal
values but will take longer, which is expected.
Regarding the discounted factor γ, the value is set
based on the immediate or future rewards. If γ =
0, this means that we care more about immediate
and current rewards and if γ = 1, this means we
care more about the future and long-term
rewards. So, in this test, the discounted factor γ is
set to 0.99, which means we are looking for the
future reward.

6.2 Performance Metrics
The performance of the proposed migration
algorithm is studied and compared with the
performance of existing algorithms. The following
performance metric is compared:
Total Average Reward: The goal of migration
is to maximize the total or cumulative reward.
The reward is represented as

 ℛ = 1
𝒯𝒸
⁄ (16)

6.3 Results Analysis
The results obtained through the simulation
measured the effectiveness of VM_MIG in terms
of total average reward. The following sub-
sections discuss the results.
Figure 1 shows that the reward varies between
different stages of the system's learning process.
The number of fog nodes used here is two, four,
and sixteen.

Figure 1. Reward per episode vs the number of fog

nodes.

Figure 2. Reward per episode vs the number of fog

nodes.

Figure 3. Reward per episode vs the number of fog

nodes.

In this scenario, the effect of the number of fog
nodes in making the decision to migrate is tested.
It runs the experiment through 2,4,8, and 16 fog
nodes while fixing the episodes.

Looking at Figure 2, it is realized that almost
all the systems started with less reward. It is
noticed that when there is no migration, the
system starts with normal performance, and then
it decreases from 14 at the beginning to 10 at the
end of the episodes. Further, it is noticed that
when only mobility is considered, the reward will
slowly increase. However, by looking closely, it is
noticed that all four systems have almost similar
values at the beginning, and then VM_MIG
recorded a sharp increase after episode 50 of the
learning lifecycle. This is because, in the
VM_MIG system, the immediate result is not the
main concern; rather, the goal is to target future
rewards and results.

It can be concluded that the "mobility-based"
and the "no migration" algorithms behave
similarly because mobility, in this case, does not
have a significant impact on the system.
Furthermore, the "load-based" algorithm
demonstrated good performance compared to the
"mobility-based" and the "no migration" systems,
as the load keeps changing dynamically. However,
as VM_MIG also considers the load but with a
threshold value before deciding, it outperforms
the other three systems. Figure 2 shows that the
VM_MIG system outperforms the mobility-
only-based system by 97% in episode 200.

Figure 3 shows that when there is no migration
decision taken, the reward will be at extremely low
values. However, mobility-based systems show
better performance when applied to four nodes
because the chance of mobility is increased, so the
system can learn better and make better
decisions. Mobility-based and load-based
recorded nearly the same values in the final stage
of learning, which is almost 500. Looking at
VM_MIG, it records better performance in terms
of reward, starting from 180 at the beginning to
1500 at episode 200. It outperforms mobility-
based and load-based systems by 66.6%.

By applying all the systems to eight fog nodes,
all systems perform better by achieving lower
latency as the options are larger, and the VM can

0

500

1000

1500

2000

2500

0 50 100 150 200

R
ew

ar
d

 (
1

/s
ec

)

Episodes (Time-steps) - Eight Fog nodes

No migration Mobility based

Load based VM_MIG

0

500

1000

1500

0 50 100 150 200

R
ew

ar
d

 (
1

/s
ec

)

Episodes (Time-steps) - Two fog nodes

No migration

Mobility based

0

500

1000

1500

2000

0 50 100 150 200

R
ew

ar
d

 (
1

/s
ec

)

Episodes (Time-steps) - Four Fog Nodes

No migration Mobility based

load Based VM_MIG

121

be migrated to any available fog node. However,
looking closely at the figure, it is realized that
VM_MIG also outperforms the other systems. In
episode 50, the VM_MIG system recorded a
sharp increase in reward to reach 2000, which it
maintained for the remainder of the simulation.
This represents a 75% improvement over the
other systems.

Further, even when the number of fog nodes is
increased to 16, all systems perform better by
achieving lower latency as the options are larger
and the VM can be migrated to any available fog
node. It is realized that VM_MIG outperforms
the other systems, although it recorded a sharp
decrease in episode 50 as it is still in the learning
phases. Later, it recorded a sharp increase after
episode 50 to reach 2500 in episode 100 and
continues to have the same reward value. This
shows an 80% improvement rate compared to
other systems. (Figure 4)

Figure 4. Reward per episode vs the number of fog
-------------nodes

CONCLUSION

In this paper, a reinforcement learning-based live
Virtual Machine Migration system is presented.
This system considers multiple factors when
deciding whether to migrate the virtual machine
from one node to another, as opposed to relying
on a single factor. VM_MIG considers the load of
the fog nodes with a pre-defined threshold value
and the mobility of the end-users. By applying RL
algorithms, the VM_MIG aims to achieve low
latency.

The system was evaluated against two existing
systems, each of which considers only one factor
in deciding about migration. One of the two
systems considers only the mobility factor, and
the second one considers only the load factor.
VM_MIG outperforms these existing systems in
terms of total average reward. The system
VM_MIG outperformed the mobility-only-based
system by 97% when tested with two fog nodes
and by 80% when tested with sixteen fog nodes in
terms of average reward. Further, the proposed
system outperforms the load-based system. 50%
and 75% when the environment consists of two
fog nodes and sixteen fog nodes, respectively.
According to these results, it is concluded that
considering multiple factors enhances the overall
system performance in terms of the average
reward in the long term.

LIMITATIONS AND FUTURE WORK

Although the proposed system solves the issue of
late and early handover and improves the
decision-making about whether or not to migrate
virtual machines by combining mobility and load
into a single comprehensive model to reduce
disruptions to time-critical applications, it has
some limitations.
1. Fixed fog node locations: The fog nodes are

assumed to have fixed locations in a square
grid. This might cause limited scalability in a
fog environment. As the number of fog nodes
increases and the network expands, the fixed
grid might limit the growing demands.

2. Homogenous fog node configurations: The
fog nodes are assumed to have the same size
and configuration and host a fixed number of
virtual machines. Homogenous fog nodes
may not easily adapt to the changing demands
in the dynamic environment.

Based on the above limitations, possible future
work directions are:
1. Explore adaptive and dynamic placement

strategies for fog nodes to optimize resource
allocation. By focusing on developing more
flexible and adaptive approaches. This can
better adapt to any changes in the network
and fog environment.

2. Investigate techniques to accommodate
diverse fog node configurations and
efficiently allocate resources on their
capabilities, allowing adaptive resource
allocation and, hence, better decisions on
migration.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of
interest regarding this publication.

FUNDING

No Funding was received for this system.

REFERENCES

Agarwal, S., Yadav, S., & Yadav, A. K. (2016). An
Efficient Architecture and Algorithm for
Resource Provisioning in Fog Computing.
International Journal of Information
Engineering and Electronic Business, 8, 1,
48–61.

Akintoye, S. B., & Bagula, A. (2019). Improving
quality-of-service in cloud/fog computing
through efficient resource allocation. Sensors
(Switzerland), 19, 6.

Bao, W., Yuan, D., Yang, Z., Wang, S., Li, W.,
Zhou, B. B., & Zomaya, A. Y. (2017). Follow Me
Fog: Toward Seamless Handover Timing
Schemes in a Fog Computing Environment.
IEEE Communications Magazine, 55, 11, 72–
78.

Basu, D., Wang, X., Hong, Y., Chen, H., & Bressan,
S. (2019). Learn-as-you-go with Megh:

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

R
ew

ar
d

 (
1

/s
ec

)

Episodes (Time-steps) - Sixteen Fog Nodes

No migration Mobility based

Load Based VM_MIG

Journal of Engineering Research, 2023, 20(2),113-122

122

Efficient Live Migration of Virtual Machines.
IEEE Transactions on Parallel and
Distributed Systems, 30, 8, 1786–1801.

Bittencourt, L. F., Lopes, M. M., Petri, I., & Rana,
O. F. (2015). Towards Virtual Machine
Migration in Fog Computing. Proceedings -
2015 10th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing,
3PGCIC 2015, 1–8.

Filiposka, S., Mishev, A., & Gilly, K. (2018).
Community-based allocation and migration
strategies for fog computing. IEEE Wireless
Communications and Networking
Conference, WCNC, 2018-April, 1–6.

Goncalves, D., Velasquez, K., Curado, M.,
Bittencourt, L., & Madeira, E. (2018).
Proactive Virtual Machine Migration in Fog
Environments. Proceedings - IEEE
Symposium on Computers and
Communications, 2018-June, 742–745.

Govindaraj, K., & Artemenko, A. (2018).
Container Live Migration for Latency Critical
Industrial Applications on Edge Computing.
IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA,
2018-Sept, iii, 83–90.

Habibi, P., Farhoudi, M., Kazemian, S.,
Khorsandi, S., & Leon-Garcia, A. (2020). Fog
Computing: A Comprehensive Architectural
Survey. IEEE Access, 8, 69105–69133.

Hammoudeh, R. A. (2018). A Concise
Introduction to Reinforcement Learning.
Journal of Reinforcement Learning 1(1), 1-11.

Han, M. (2018). Reinforcement Learning
Approaches in Dynamic Environments
[Doctoral dissertation, ParisTech]. HAL
Archives Ouvertes. HAL Id: tel-01891805.

Machen, A., Wang, S., Leung, K. K., Ko, B. J., &
Salonidis, T. (2018). Live Service Migration in
Mobile Edge Clouds. IEEE Wireless
Communications, 25, 1, 140–147.

Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K. K.
R., & Dlodlo, M. (2017). From Cloud to Fog
Computing: A Review and a Conceptual Live
VM Migration Framework. IEEE Access, 5,
8284–8300.

Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G.,
Longo, F., & Puliafito, A. (2019). Container
migration in the fog: A performance
evaluation. Sensors (Switzerland), 19, 7, 1–
22.

Rahbari, D., & Nickray, M. (2019). Computation
Offloading and Scheduling in Edge-Fog Cloud
Computing. Journal of Electronic &
Information Systems, 1, 1, 24–34.

Rodrigues, T. G., Suto, K., Nishiyama, H., & Kato,
N. (2017). Hybrid Method for Minimizing
Service Delay in Edge Cloud Computing
Through VM Migration and Transmission
Power Control. IEEE Transactions on
Computers, 66, 5, 810–819.

Roig, P. J., Alcaraz, S., Gilly, K., & Juiz, C. (2019).
Modelling VM migration in a fog computing
environment. Elektronika Ir Elektrotechnika,
25(5), 75–81.

Rosário, D., Schimuneck, M., Camargo, J., Nobre,
J., Both, C., Rochol, J., & Gerla, M. (2018).
Service migration from cloud to multi-tier fog
nodes for multimedia dissemination with QoE
support. Sensors (Switzerland), 18, 2, 1–17.

Tang, Z., Zhou, X., Zhang, F., Jia, W., & Zhao, W.

(2018). Migration Modeling and Learning
Algorithms for Containers in Fog Computing.
IEEE Transactions on Services Computing,
14, 8.

Wang, J., Hu, J., & Min, G. (2020). Online Service
Migration in Edge Computing with Incomplete
Information: A Deep Recurrent Actor-Critic
Method. 1–12.

Wang, S., Xu, J., Zhang, N., & Liu, Y. (2018). A
Survey on Service Migration in Mobile Edge
Computing. IEEE Access, 6, 23511–23528.

Yi, S., Hao, Z., Qin, Z., & Li, Q. (2016). Fog
computing: Platform and applications.
Proceedings - 3rd Workshop on Hot Topics in
Web Systems and Technologies, HotWeb
2015, 73–78.

Zhang, C., & Zheng, Z. (2019). Task migration for
mobile edge computing using deep
reinforcement learning. Future Generation
Computer Systems, 96, 111–118.

Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018).
A Survey on Virtual Machine Migration:
Challenges, Techniques, and Open Issues.
IEEE Communications Surveys and
Tutorials, 20, 2, 1206–1243.

Zhou, Z., Liao, H., Zhao, X., Ai, B., & Guizani, M.
(2019). Reliable Task Offloading for Vehicular
Fog Computing under Information
Asymmetry and Information Uncertainty.
IEEE Transactions on Vehicular Technology,
1–1.

Zhu, Q., Si, B., Yang, F., & Ma, Y. (2017). Task
offloading decision in the fog computing
system. China Communications, 14, 11, 59–
68.

