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ي    :الملخص
 
ف أساسية  آلية  هي  اضية  الافتر المحاكاة  إن 
ي كفاءة  

 
ي تساعد ف

الحوسبة الضبابية، حيث تتيح المرونة التر
ي بيئة الحوسبة الضبابية. 

 
ولذا   الموارد لتحقيق مرونة عالية ف

اضية ) ( من جهاز إلى آخر. VMsيلزم نقل بعض الأجهزة الافتر
ي إذ يعمل  

اض  ويمكن تحقيق ذلك عن طريق نقل الجهاز الافتر
إنجازه.  ي 

العمل والتأختر ف  التوقف عن  ي   على تقليل وقت 
وف 

هذا الصدد ناقشت العديد من الدراسات الحالية نقل الأجهزة  
ي بيئة الحوسبة الضبابية، إلا أن هذه  

اضية أثناء عملها ف  الافتر
الدراسات يتخللها بعض نقاط الضعف مثل: النقل المسبق لـ  

بناءً على اضية  الافتر أو  الأجهزة   ، المستخدمير  تنبؤات حركة   
بناءً على حمولة الأجهزة فقط، مما يسبب مشكلة النقل المبكر  

المتأخر.  إلى  أو  الضبابية  الحوسبة  بيئة  ي 
ف  النظر  يُفضل  كما 

بيئة   لأنها  اضية؛  الافتر الأجهزة  نقل  لتقرير  عوامل  عدة 
ديناميكية وتحيط بها العديد من العوامل. ومن هذا المنطلق  
الاعتبار عوامل متعددة   ي 

يأخذ ف  نظام  لتطوير  الحاجة  تظهر 
ي أم لا. 

اض  وللتمكن    لتقرير ما إذا كان سيتم نقل الجهاز الافتر
الدراسة   المتأخر تطرح هذه  أو  المبكر  النقل  من حل مشكلة 

ا لنقل  
ً
ي بيئة الحوسبة الضبابية عن طريق    VMنهجًا جديد

ف 
هرت التجارب أن  تطبيق التعلم المعزز لاتخاذ القرار. ولقد أظ

التطبيقات ذات   انتقال  يقلل بشكل كبتر من زمن  النهج  هذا 
ح هذا، المسمى   الأهمية الزمنية. بالإضافة إلى أن نظامنا المقتر

VM_MIG    الوصول النماذج الأخرى من حيث زمن  ، يفوق 
٪ ، وقد أثبت هذا أنه من الأفضل أخذ عوامل  77.5بحوالىي  

ي  
ف  اضية  الافتر الأجهزة  نقل  لتحديد  الاعتبار  عير   ي 

ف  متعددة 
ذات   التطبيقات  ي 

ف  فعال  بشكل  الضبابية  الحوسبة  بيئة 
 الأهمية الزمنية لتقليل زمن الوصول. 

 

ABSTRACT: Virtualization is an essential 
mechanism in fog computing that enables elasticity 
and isolation, which in turn helps achieve resource 
efficiency. To bring high flexibility in a fog 
environment, migration of virtual machines from 
one node to another is required. This can be achieved 
by live virtual machine migration to reduce 
downtime and delays. Multiple existing studies have 
discussed live virtual machine migration in a fog 
environment. However, these studies have some 
limitations, such as pre-migrating the virtual 
machines based on mobility prediction only or based 
on the load only, which causes an issue of late and 
early handover. Due to the dynamic nature of fog 
environments, VM migration decisions require 
consideration of multiple factors. Hence, there is a 
need to develop a system that considers multiple 
factors to decide to migrate a virtual machine or not 
to solve the issue of early and late handover. This 
study proposes a novel approach to live virtual 
machine migration that applies reinforcement 
learning for decision-making. Experiments show 
that the proposed approach significantly reduces the 
latency of time-critical applications. The proposed 
system, outperforms the existing systems in terms of 
total average reward. The system  outperformed 
the mobility-only-based system by 97% when tested 
with two fog nodes and by 80% when tested with 
sixteen fog nodes in terms of average reward. 
Further, the proposed system outperforms the load-
based system by 50% and 75% when the 
environment consists of two fog nodes and sixteen 
fog nodes, respectively. This proved that considering 
multiple factors in deciding virtual machine 
migration in a fog environment can be effectively 
applied in time-critical applications to reduce 
latency. 

Keywords: Latency reduction, live virtual machine migration, load balancing, reinforcement learning, 
Reinforcement Learning algorithms, reward mechanism 
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INTRODUCTION 

According to (Giri et al., 2017), fog computing is 
an architecture that uses one or more near-edge 
devices to carry out some amount of storage, 
communication, control, configuration, and 
management of the cloud. It does not substitute 
the cloud but extends its functionality near the 
edge of users. Fog means "a cloud closer to the 
ground" and is a new technology that extends - but 
doesn't substitute - the cloud computing services 
to the end users (Mouradian et al., 2018). Fog 
provides different facilities and services to the 
users, i.e., latency-aware, geo-distributed, and 
mobility-aware services.  

Fog computing was initially designed and 
introduced to support latency-sensitive 
applications. This includes Smart City 
applications, Intelligent Transportation Systems, 
Augmented Reality, Healthcare, Tele-
Surveillance, Smart Grid, Smart Agriculture, 
Smart Waste Management, Smart Water 
Management, Smart Retail stores, etc. (Haouari et 
al., 2018) (Naha et al., 2018),(Yi et al., 2016),(Hu 
et al., 2017).  

Virtualization plays a crucial role in efficient 
resource allocations to end users in fog computing 
scenarios. However, improper placement of 
virtual machines on physical machines can lead to 
performance degradation(Akintoye & Bagula, 
2019). In the context of a fog scenario, the 
importance of considering performance and 
minimizing downtime becomes even more 
critical(Yi et al., 2016). Hence, it could be 
important to move the virtual machines from one 
fog node to another to ensure a smooth transition 
and no disturbance to the real-time 
applications(Zhou et al., 2019; Bittencourt et al., 
2015; Govindaraj & Artemenko, 2018; Puliafito et 
al., 2019; Rodrigues et al., 2017; Roig et al., 2019; 
Rosário et al., 2018; J. Wang et al., 2020; F. Zhang 
et al., 2018).   

In the area of fog computing, determining 
whether or not to migrate virtual 
machines/services from one node to another is a 
critical decision(Osanaiye et al., 2017), and the 
research community and industry have developed 
various mechanisms to make this decision 
effective based on different factors and 
parameters(Agarwal et al., 2016; Filiposka et al., 
2018; Govindaraj & Artemenko, 2018; Habibi et 
al., 2020; Live Virtual Machine Migration to 
Support Real-Time IoT Applications in 
Heterogeneous Fog Environment V3, n.d.; 
Machen et al., 2018; Rahbari & Nickray, 2019; 
Zhu et al., 2017). Several studies have addressed 
this issue by developing different migration 
strategies based on user mobility, load balancing, 
energy saving, etc. In this context, reinforcement 
learning can be applied to make decisions more 
effective.  

In previous studies, researchers explored the 
live virtual machine migration in the fog 
computing environment. Some studies 
(Goncalves et al., 2018) and (C. Zhang & Zheng, 
2019) only migrated virtual machines in advance 
based on mobility predictions. As a result, it is 
difficult to make an accurate decision on whether 
or not to migrate the VM based on mobility 
prediction only, as the fog environment is 

dynamic and the users' movements cannot be 
accurately predicted, which could lead to the issue 
of early handover and wrong decision-making. 
Other studies consider the load as a factor in 
deciding the migration of the VMs and only 
migrate the VMs when the machines become 
overloaded (Tang et al., 2018). As a result, this 
might lead to the issue of late handover and may 
cause a disturbance to the real-time application 
and hence increase the delay.  

Load and mobility are critical factors when 
deciding on VM migration because they are 
among the most influential factors that impact the 
performance, resource utilization, and latency 
requirements of real-time applications, as 
mentioned before.  

In a fog environment, the joint consideration 
of both mobility and load factors with threshold 
values significantly impacts the decision-making 
process of whether or not to migrate the VMs. 

However, previous studies have applied 
conventional algorithms as well as artificial 
intelligence-based algorithms to design their 
model. The study (C. Zhang & Zheng, 2019) 
proposed deep Reinforcement Learning in a 
Mobile Edge Computing system to decide the 
migration of VM. In the study (Basu et al., 2019), 
the authors applied RL to utilize the load details 
as a parameter to determine whether or not to 
migrate the VMs. RL agents monitor the 
machines' loads in the environment and decide on 
the migration. (Goncalves et al., 2018) I proposed 
using Integer Linear Programming (ILP) to find 
out the movement of the users and decide the 
migration accordingly.  

For delay-sensitive applications in a fog 
environment, it is important to consider the high 
dynamic level of the environment and the 
complexity as a fog environment is surrounded by 
many factors. Delay is critical to the real-time 
application, and hence, the algorithms used to 
decide the VM migration should be carefully 
chosen and designed to achieve the possible 
reduction in latency and response time. It is worth 
noting that the fog environment is dynamic, 
consists of different types of devices, is highly 
affected by the users' mobility, and the load factor 
is critical in making decisions(Hammoudeh Rlr, 
2018). Therefore, it is suitable and advised to 
design a model to decide the VM migration while 
applying RL algorithms. In Reinforcement 
learning, the system doesn't have a set of data to 
train, but rather, it learns by trial and error (Han, 
2018). The system learns from the interaction 
with the environment to achieve the goal, which is 
usually maximizing the reward in the long term. 
RL is suitable for solving complex but narrow 
problems where the dynamic and large 
environment is not a problem and the input of the 
surrounding area is not expected, but there is a 
goal to be achieved. Hence, in this paper, we 
propose a reinforcement learning-based approach 
to improve the decision-making about whether or 
not to migrate virtual machines. This proposal 
aims to solve the issue of early and late handover 
of virtual machines. This is done by combining 
mobility and load factors into a single 
comprehensive model to reduce disruptions to 
time-critical applications. By combining both 
factors in one model, the RL can make a more 
informed and context-aware decision.  
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Table 1. Comparison between some existing studies and our proposed research.  

Reference study Timing of the designed solution Decision to be taken 
Reactive Proactive When Where 

(Bao et al., 2017)  √ √  
(Goncalves et al., 2018)  √ √ √ 
(C. Zhang & Zheng, 2019)  √ √  
(Basu et al., 2019) √  √  
Proposed Research  √ √  

This comprehensive approach can lead to 
improved performance optimization and 
reduction of latency for time-critical applications. 
Further, the model can become more adaptive to 
the changing conditions in the fog environment 
and can adjust the VM migration decision 
accordingly. This model enhances the 
performance, adaptability, and synergy between 
the incorporated factors. The rest of this paper is 
organized as follows: Section 2 provides an 
overview of the related work. Section 3 presents 
the system architecture and model. In section 4, 
the problem formulation is outlined. The RL 
algorithm is detailed in section 5. Section 6 
illustrates the evaluation of the proposed model. 
The paper concludes in section 7, followed by a 
discussion on limitations and future work in 
section 8. 
 

RELATED WORK 

A study (Bao et al., 2017) proposed a framework 
to support smooth handover between the fog 
nodes in a timely manner. In this study, the 
authors are following the principle of "Follow me", 
similar to follow me cloud, which aimed at a 
smooth migration from one data centre to another 
(S. Wang et al., 2018). This proposal results in a 
reduction in the service   
 
Interruption time and downtime. The study 
guarantees service continuity and reduces the 
latency during handover. It proactively makes the 
decision to migrate to the virtual machine. 
However, the shortcoming of this research is that 
this method is good in scenarios in which the 
users' movement and the movement are fixed. 
There is no specific algorithm used in this 
proposal, only a framework to measure the 
strength of the signal in the access point and then 
migrate it. Further, the study considers only one 
factor in deciding following the user movement 
and not the load of the source and destination 
machines, which might lead to wrong decision-
making. 

A different approach is used in the study 
(Goncalves et al., 2018), where the proposal used 
Integer Linear Programming (ILP) to decide when 
to migrate the VMs. It takes the mobility 
prediction and starts the process 5 minutes before 
the user's movement. They used ILP to optimize 
decision-making. The objective functions are 1) 
Maximizing the accepted requests and 2) 
Minimizing the latency. However, the limitation 
of this study is that it proactively migrates the VM 
based on mobility prediction. This might lead to 
early handover and lead to a wrong decision.  

The study doesn't consider another factor in 
deciding when to migrate, which might also lead 
to inappropriate decisions as the fog environment 
is surrounded by multiple factors. 

A study (C. Zhang & Zheng, 2019) proposed deep 
Q-network for task migration in Mobile Edge 
Computing to decide whether to migrate the 
virtual machine. This research applies the 
reinforcement learning algorithm to learn the 
environment and then make the decision. In this 
research, mobility is the main trigger for 
migration, where a fog node master learns the 
status of the environment, takes action 
accordingly, and then gets a minimum cost value. 
This study shows better improvement compared 
to conventional algorithms, however, but it only 
considers one factor, which might lead to 
inappropriate decisions in the fog context.  

In the study (Basu et al., 2019), the authors 
considered the load factor in making migration 
decisions without considering a threshold, and 
they migrated virtual machines after the fog node 
was already overloaded. RL can utilize the load 
details as a parameter to determine whether or 
not to migrate the VMs. RL agents can monitor 
the machines' loads in the environment and 
decide on the migration. Considering the load 
factor while adopting RL, facilitating the load 
balancing, and  
distributing the workload. It also helps in 
improving efficiency. However, waiting for the 
system to be overloaded and then deciding to 
migrate may cause an issue of late handover and 
hence incur a delay.   
The following table summarizes the existing 
studies in this context in comparison with the 
proposed research. 
 

SYSTEM MODEL 

The proposed system is designed for a square 
area. The area size is assumed to be  50 m × 50 m. 
This site has been chosen because the coverage of 
the network in the fog nodes could reach a 
maximum of 60 meters. So, to ensure that all fog 
nodes are connected,  this area size is chosen.  
Before discussing the model, it is important to 
define some of the notations and variables used in 
the system model and problem formula. Table 2 
defines the important notations and their 
abbreviations:  
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Table 2. List of notations applied in designing the 
system model. 

Symbol The meaning 
ℱ fog node set 

𝐽 number of the fog nodes 

𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 represents a 𝑗𝑡ℎ fog node with 

latitude and longitude positions of 
k and l, respectively, ranging from 
1 to I. 

𝒱 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
) 

The virtual machines set in fog 
node j 

𝑄 number of virtual machines in one 
fog node 

𝑣
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
),𝔮

𝑗
 Represents the is the 𝔮𝑡ℎ VM 

running on the fog node 𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 

𝒰 Set of users 

𝑀 number of users 
UI ith user (𝑖 ∈ [1 𝑚]) 

𝐿𝑎𝑐 , 𝐿𝑜𝑐 Represents the latitude and 
longitude coordinates of the user's 
current location, respectively. 

𝐿𝑎𝑛, 𝐿𝑜𝑛 Represents the latitude and 
longitude coordinates of the user's 
new location, respectively. 

𝐷((𝐿𝑎𝑐 , 𝐿𝑜𝑐), 
(𝐿𝑎𝑛, 𝐿𝑜𝑛)) 

The distance that the user will 
move from its current location 
(𝐿𝑎𝑐 , 𝐿𝑜𝑐) to its new location 
(𝐿𝑎𝑛, 𝐿𝑜𝑛). 

𝒞𝐹𝑖 
the capacity of the ith fog node 

𝒱𝒫𝑖  
the total number of virtual CPUs in 
fog node i 

𝒫𝑖 the number of Physical CPUs in the 
fog node i 

𝐶𝑖 the total cores in each physical CPU 
of fog node i 

𝑣𝐶𝑃𝑈 the number of assigned virtual 
CPUs per VM 

ℒ𝐹𝑖  
The load of the ith fog node 

𝔯𝐶𝑃𝑈
𝑖  the number of virtual CPUs 

running on fog node i 
(𝒯𝒸) total cost 

(ℳ𝒸) migration Cost 

(𝒞𝒸) computation Cost 

𝑆𝑡 state-space at a time 𝑡 
ℛ the reward of the system 

𝑇𝐻ℒ𝐹𝑖
 the threshold of the load 

 
In this model, the set of 𝐽 fog nodes is assumed 
with locations given by their longitudes and 
latitudes in a square grid with grid cells kth row 
and 𝑙th column ranging from 1 to I: 

{(𝐿𝑎𝑘
𝑗
, 𝐿𝑜𝑙

𝑗
): 𝑘, 𝑙 = 1,⋯ , 𝐼 } for the 𝑗𝑡ℎ fog node. It is 

represented in equation 1.  
Each fog node is equipped with GPS to define its 
location in correspondence to the latitude and 
longitude values. Thence, the set of fog nodes is 
represented as 

ℱ = {𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
∶ 𝑗 = 1,⋯ , 𝐽; 𝑘, 𝑙 = 1,⋯ , 𝐼 }.           (1) 

In other words, ℱ is a collection of 𝐽 tuples, where 
each tuple consists of a pair of latitude and 
longitude values indexed by 𝑘 𝑎𝑛𝑑 𝑙, where  

𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 represents a 𝑗𝑡ℎ fog node with latitude 

and longitude positions of k and 𝑙, respectively, 
ranging from 1 to I.  
 

For example, 𝐹(6,7)
5  represents the fifth fog node, 

which has a latitude value of 6 and a longitude 
value of 7.  
Each fog node hosts a set 𝑄 virtual machines of all 
have the same size and configuration, denoted by 
equation 2. 

𝒱 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
) = {   𝑣

(𝐿𝑎𝑘
𝑗
,𝐿𝑜𝑙

𝑗
)𝔮

𝑗
∶ 𝔮 = 1,… , 𝑄 }.        (2) 

where  𝑣
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
),𝔮

𝑗
 Represents the is the 𝔮𝑡ℎ VM 

running on the fog node 𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
 And 𝑄 is the 

total number of the VMs running on that fog node. 
Hence, the above representation represents all 
VMs running on the specific fog node.  
Each fog node has a controller which handles the 
details of fog nodes in a certain coverage area. 
Let's assume each fog node covers 60 meters only 
in all directions. This assumption is based on the 
fact that wireless coverage can vary between fog 
nodes, but an average cover range of 60 meters is 
typical for fog nodes, which have a range of 
around 100 meters. However, the wireless signal 
could be weakened as they travel through the air 
and would become too weak beyond a certain 
distance. Hence, by setting the coverage area of 
each fog node to 60 meters, it can be ensured that 
the fog nodes are close enough to communicate 
effectively to provide enough coverage to serve the 
needs of the users.  

The controller in each fog node senses the 
environment and maintains details about the 
environment, including the load, users' 
information, and location details. There are 𝑀 ≤
𝑄 users. Each user may be connected to at most 
one of the virtual machines at any point in time, 
as shown in equation 3.  

𝒰 = {𝑢(𝐿𝑎𝑠,𝐿𝑜𝑟)
(𝑗,𝑘,𝑙,𝔮𝑖) : 𝔮𝑖 = 1,⋯ , 𝑄; 𝑖 = 1,… ,𝑀}              (3) 

In this notation, U represents the set of 𝑀 users. 
𝐿𝑎𝑠 , 𝐿𝑜𝑟 Represent the latitude and longitude 
coordinates of the user's location, respectively. 
𝑗, 𝑘 𝑎𝑛𝑑 𝑙 represent the fog node where the user is 
connected, and 𝑗 is the index of the fog 
node, 𝑘 𝑎𝑛𝑑 𝑙 are the indices of the virtual 
machine within the fog node. 𝔮𝑖 Represents the 
index of the virtual machine that the user is 
connected to, which ranges from 1 to 𝑄. In other 
words, 𝒰 is a set of 𝑀 tuples where each tuple 
contains information about the user's location 
and which virtual machine they are connected to 
(if any).  
Each mobile user is equipped with a GPS system 
to define its location. It is assumed that all mobile 
users are connected to fog nodes using wireless 
connections. It is also assumed that all fog nodes 
are connected using wireless connections. The 
user will move a distance   ((𝐿𝑎𝑐 , 𝐿𝑜𝑐), (𝐿𝑎𝑛 , 𝐿𝑜𝑛)) 
from its current location (𝐿𝑎𝑐 , 𝐿𝑜𝑐) to its new 
location (𝐿𝑎𝑛 , 𝐿𝑜𝑛). 
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3.1 Fog Node Structure 
The following defines the structure of the fog 

nodes:  
 

𝒞𝐹𝑖  
The capacity of the fog node: In our 
proposed scenario, the number of virtual 
machines as a parameter to find the 
capacity of the fog node is taken by 
ignoring other factors and processes that 
need to be run on the fog node.  
 
Hence, the capacity is defined as the total 
number of VMs that can be run on the 
machine. It is calculated as the number 
of processors and cores available in the 
fog node assigned to the virtual 
machines. It is assumed that all VMs 
have the same CPU allocation.  

𝒱𝒫𝑖 = 𝒫
𝑖  ×  𝐶𝑖                                         (4) 

Where 𝒫𝑖 Is the number of Physical 

CPUs in the fog node, i and 𝐶𝑖 Is the total 
number of cores in each physical CPU of 
fog node i. Hence, the capacity of a fog 
node is calculated as follows: 
𝒞𝐹𝑖 = 𝒱𝒫𝑖  / 𝑣𝐶𝑃𝑈                                       (5) 

Where 𝒱𝒫𝑖  represented the total number 

of virtual CPUs in fog node, i and 𝑣𝐶𝑃𝑈  Is 
the total number of assigned virtual 
CPUs per VM.  
 

ℒ𝐹𝑖
 The load of the fog node: It is the 

number of currently running VMs. 
However, for simplicity, this calculation 
is done by ignoring the other processes 
running in the fog node and assuming 
that the only load of the fog node is the 
virtual machine's load.               

ℒ𝐹𝑖 = 𝔯𝐶𝑃𝑈
𝑖 /𝑣𝐶𝑃𝑈                                        (6) 

Where, 𝔯CPU
i  represents the number of 

virtual CPUs running on fog node i and 
𝑣𝐶𝑃𝑈  Represents the assigned virtual 
CPUs per VM.  

 
Initially, when the environment is initiated, 

each fog node exchanges the information 
messages regarding its location index values (La 
and Lo) with all nodes in the area. At startup, the 
fog nodes will acquire the values of their location 
positions in terms of latitude and longitude. It is 
assumed that all fog nodes are fixed in their 
locations. Then, the fog nodes will exchange 

information. The following section explains how 
the nodes exchange information.  

 

VM MIGRATION PROBLEM 
FORMULATION 

The migration of virtual machines has the benefit 
of reducing the latency of real-time applications. 
However, if a wrong/late decision is taken and an 
unsuitable migration strategy is applied, this may 
result in a longer time to accomplish the real-time 
applications. Therefore, with the objective of 
finding the best strategy, Reinforcement Learning 
is applied to reach the optimum decision. Taking 
the load, the location of the fog nodes and the 
movement of the users into account, the problem 
can be formulated as follows:  
Total Cost (𝒯𝒸): The total cost consists of two 
parts: The Migration Cost ℳ𝒸 and the 
Computation cost 𝒞𝒸 . 
Migration Cost (ℳ𝒸): It is the delay incurred by 
the network to migrate the virtual machine. This 
includes the transmission delay. 𝒯𝑑𝑒𝑙𝑎𝑦  and the 

signal delay 𝒮𝑑𝑒𝑙𝑎𝑦 . The processing delay of the 
VM transfer is ignored as the main concern is to 
calculate the delay incurred by the media of 
transfer and the VM size and as the processing 
delay is minimal due to the use of high-speed 
processors. It can be calculated as:  

𝒯𝑑𝑒𝑙𝑎𝑦 =
𝑣𝒮

ℬ𝓌
                                                                 (7) 

Where,  𝑣𝒮  is the size of the virtual machine (in 
bits) and ℬ𝓌   It is the bandwidth of the network 
(in bits per second). The signal delay can be 
calculated as: 

𝒮𝑑𝑒𝑙𝑎𝑦 =
𝒟𝑈𝑖

𝑣
                                                               (8) 

Where, 𝒟𝑈𝑖  Is the distance between the user's new 
location to the source fog node or to the 
destination fog node based on user movement, 
which is measured in meters, and 𝑣 is the media 
speed, which is in this case measured in 
meters/second. 
Hence, the migration cost is                   
 ℳ𝒸 = 𝒯𝑑𝑒𝑙𝑎𝑦 + 𝒮𝑑𝑒𝑙𝑎𝑦                                             (9) 

Computation Cost (𝒞𝒸): It represents the cost 
of the computational resources required to 
perform the migration process. This also has a 
positive relationship with the load. If the load is 
high, the computational cost inside a particular 
fog node will be high and vice versa. It is 
calculated as:  
𝒞𝒸 = ℒ𝐹𝑖  × 𝑃𝑠                                                          (10) 

 
where ℒ𝐹𝑖Is the load of the fog node and  𝑃𝑠 It 

Algorithm 2: Exchange the 
information between the fog nodes.  

1. Begin the procedure 
2. For each fog node F in the system: 
3.      Calculate the Euclidean distance 

     between F and every other fog  
     node in the system 

4.      Store the distance in M 
5.      If M is less than or equal to 60 m 
6.             Add the distance value to F's  

            memory 
7.       End If 
8. End For 
9. End the procedure 

Algorithm 1: Calculate the location 
index of each fog node (Environment 
Initialization). 

1. Initialize ( ) 
2. Begin 
3. For j = 1 to J 
4.     Initialize La and Lo location values 

for fog node Fj 
5.     Store location in each node controller 
6. End For 
7. End 
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is the processing speed of the node in terms of 
VMs/sec, which is the inverse of the processing 
time of each VM. Hence, 
          𝒯𝒸 = ℳ𝒸 + 𝒞𝒸                                               (11) 
In this case, the computational cost must be 
compared to whether the VM is not migrated and 
if it is migrated to a destination fog node.  

The system evolves over time into a set of 
infinite episodes Ʈ = {1, 2,…, ∞}. At every episode 
(i.e., time t), the user 𝑢𝑖 will be connected to one 

fog node (say F𝑗). Let us assume that the fog node 

where the VM will be migrated is F𝑗′. The system 
state is defined using two parameters: The load 
difference state  (𝐿𝐷) between a pair of fog nodes 

(F𝑗, F𝑗
′
), and the distance state for the user 𝑢𝑖 

(𝐿𝐶𝑖) to the source fog node and to the destination 
fog node. LD (i.e., the load difference state 
between 𝐹𝑗and 𝐹𝑗′ This can be defined as follows:  

𝐿𝐷 (𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
, 𝐹
(𝐿𝑎𝑘′

𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
) =

{
 
 

 
 0, 𝑖𝑓    𝐿𝐹

(𝐿𝑎𝑘
𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
> 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

1, 𝑖𝑓 𝐿𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
= 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

2, 𝑖𝑓 𝐿𝐹
(𝐿𝑎𝑘

𝑗
,𝐿𝑜𝑙

𝑗
)

𝑗
< 𝐿𝐹

(𝐿𝑎𝑘′
𝑗′
,𝐿𝑜𝑙′

𝑗′
)

𝑗′
,

        (12) 

 
Further, 𝐿𝐶𝑖 (i.e., the distance state for the user 𝑢𝑖) 
will be defined based on the distance between the 

user's new location and the fog nodes F𝑗 and F𝑗′. 
Therefore, a new parameter is introduced to 
represent the user's new location, denoted as 𝑢′, 
which consists of the latitude and longitude values 
of   (𝐿𝑎𝑠′ , 𝐿𝑜𝑟′).   Hence, 𝐿𝐶𝑖 This can be expressed 
as follows:  

𝐿𝐶𝑖 = {

0, 𝑖𝑓 𝑑(F𝑗, 𝑢′) > d(F𝑗
′
, 𝑢′),

1, 𝑖𝑓 𝑑(F𝑗, 𝑢′) = d(F𝑗
′
, 𝑢′),

2, 𝑖𝑓 𝑑(F𝑗 , 𝑢′) < d(F𝑗
′
, 𝑢′)

 (13) 

The overall state of the system at time t can be 
written as:   
𝑎𝑛𝑑𝑆𝑡 = {(𝐿𝐷, 𝐿𝐶𝑖)}, where 𝑆𝑡is state space at time 
𝑡 and,  
- 𝐿𝐷 = 0, 𝑜𝑛𝑒 𝑜𝑟 2, are the possible states of the 

load difference between fog node pairs (F𝑗, 

F𝑗
′
) 

- 𝐿𝐶𝑖 = 0, 1 𝑜𝑟 2 are the possible states of the 
distance for the user 𝑢𝑖. It is defined based on 
the distance between the user's new location 

and the fog nodes. F𝑗 and F𝑗′ . 
Hence, the possible state space could be re-
written as:  

𝑆𝑡 = {

(0,0), (0,1), (0,2)

(1,0), (1,1), (1,2)

(2,0), (2,1), (2,2)

} 

 
At any time 𝑡, the fog node controller, which in the 
proposed model represents the reinforcement-
learning  
an agent will take action to migrate or not. The 
action is denoted. 𝐴𝑡 ∈  {0, 1}. A value of one 
means migrate, and a value of zero means do not 
migrate. Therefore, the system will generate a 

state-action pair. (𝑆𝑡 , 𝐴𝑡).  
Reward: This research aims to reduce the 

total cost of accomplishing tasks for mobile users 
and maximize the reward. The reward can be 
defined as the minimal cost of accomplishing the 
tasks, which is defined in this scenario as the total 
cost. (𝒯𝒸). The reward is represented as follows:   

ℛ = 1
𝒯𝒸
⁄                                                                    (14) 

 
There is an inverse relationship between the 

reward and the total cost. If the total cost is high, 
the reward is less and vice versa.  
 

ALGORITHM AND AGENT TRAINING 

To start with, the system proposed in this paper 
will be referred to as VM_MIG from now on. 
Next, the load threshold will be defined. The load 
threshold is the percentage of the fog node 
utilization that should not be exceeded. If the load 
threshold is exceeded, virtual machines should be 
migrated. A load threshold is necessary to prevent 
fog nodes from becoming overloaded and 
negatively impacting the system's performance. If 
a fog node's load exceeds a certain threshold, it 
may begin to delay responses, resulting in 
degraded user experience and decreased system 
performance. By setting a threshold for the load 
on a fog node, the system can be designed to 
migrate virtual machines to other nodes before 
the load becomes too high. This can help balance 
the load across the fog nodes, preventing any node 
from becoming overloaded and avoiding 
performance degradation. Additionally, setting a 
threshold can help optimize resource utilization 
and reduce energy consumption by ensuring that 
nodes are not operating at higher than necessary 
loads. The values range from 0% to 100%. If the 
threshold is set too low, it can lead to degraded 
system performance and increased overhead due 
to VM migration. On the other hand, setting the 
threshold too high can cause the fog node to delay 
the migration, potentially affecting the experience 
of users running real-time applications. In this 
proposed scenario, the threshold of the load for 
any fog node is set as follows:  

THℒ𝐹𝑖
=

1

2
𝒞𝐹𝑖                                                            (15) 

The following algorithm describes how the system 
will learn whether to migrate or not based on the 
Reinforcement Learning setup:  
Before looking at the algorithm, some set of 
terminologies are defined in table 3.  
 
 

EVALUATION RESULTS 

In this section, the results of a simulation-based 
performance evaluation to assess the effectiveness 
of the proposed algorithm are presented and 
compared with existing algorithms. The 
simulation was implemented in the MATLAB 
R2021b environment, which includes 
Reinforcement Learning Applications that 
facilitate the simulation of reinforcement 
learning-based research.  
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6.1 Experiments Settings   
In this evaluation, a comparison of the proposed 
algorithm (VM_MIG) with the following 
algorithms is done: 
1. When no migration decision is made, this is 

done because the VM_MIG system must be 
tested against the systems that do not make 
any migration decision based on system 
efficiency.  

2. The proposed model is compared with the 
study (C. Zhang & Zheng, 2019), where the 
authors use only the mobility factor to decide 
about migration. This is done because this 
study considers VM and task migration in an 
environment similar to ours, which is edge 
computing, by adopting RL. 

3. The proposed system is also compared to the 
study (Basu et al., 2019), where the authors 
use the load factor to make migration 
decisions without considering a threshold. 
They migrate virtual machines after the fog 
node is already overloaded. The proposed 
study decides the migration based on multiple 
factors, including mobility and load, while 
considering a threshold value of the load 
before deciding on the migration.  

 
Table 3.List of notations used in Reinforcement 

Learning Algorithm. 
Notation Definition 

Capacity 
(N)  

A number  

replay 
memory 
(M)  

Replay Memory in the RL setting 
allows the agent to learn from past 
experiences instead of only 
learning from its most recent 
experiences. 

ℚ value 
with 𝜃 
weight 

Q-value function with its 
parameters initialized to the value 
of θ. The Q-value function is 
updated during the learning 
process to better approximate the 
true Q-values for different states 
and actions. 

ℚ̅ value 

with �̅� 

Target Q-value function. This is a 
copy of the Q-value function that is 
updated less frequently, typically 
after a certain number of 
iterations. 

γ A discounted rate is a factor used 
to balance the importance of 
immediate rewards versus future 
rewards. It is represented by the 
symbol γ (gamma) and is a value 
between 0 and 1. 

learning 
rate 𝛼 

It controls the rate at which the 
agent learns from new experiences 
and determines how much weight 
should be given to new 
information. 

exploration 
rate 𝜖  

The probability that an agent will 
choose a random action instead of 
the action that it believes to be the 
best based on its current 
knowledge or policy. 

 
Algorithm 3: Virtual Machine 
Migration in Fog Environment Using 
Reinforcement Learning 
 
1. Initialize a replay memory (M) to 

capacity ℕ 
2. Initialize ℚ value with 𝜃 weight,  

3. Initialize the target ℚ̅ value to �̅�  
4. Initialize ᴓ value randomly.  
5. Initialize γ 
6. Initialize learning rate 𝛼 
7. Set update steps U, 
8. Set Batch size  
9. Set exploration rate 𝜖  
10. The set decay rate of 𝜖 
11. While t ≤ ∞ :  
1. Generate random number ᴓ from [0,1] 
2. Calculate THℒ𝐹𝑖

According to eq. (10)       

3. If ℒ𝐹𝑗  reaches, THℒ𝐹𝑗
Then: 

4. Calculate 𝐿𝐶𝑖 

5.  If  𝑑(F𝑗 , 𝑢′) = d(F𝑗
′
, 𝑢′) Then:  

6.  Calculate ℒ𝐹𝑗′   According to eq. (3) 

7.  If ℒ𝐹𝑗  > ℒ𝐹𝑗′  Then:  

8.  Migrate the VM 
9.  Else:  
10.  Calculate the total cost of migration.  

11.  If the Total Cost of migration is higher 

12. than the total cost of no migration, then:   

13. Don't Migrate VM 
14. Else:  
15. Migrate VM 
16.  End If 
17.  End If 
18.  End If  
19.  End While  

 
Table 4 shows the configuration parameters of the 
simulation process.  
 
 Table 4. The configuration parameters for the 
simulation 

Parameter Value 
Sample Time 5 seconds 
Maximum Episodes 200, 500, 1000 
Maximum Episodes 
Length 

100 time-steps 

α – Learning Rate 0.01 

γ – Discounted Factor 0.99 
Batch Size 64 
ε- start 1 

ε- min 0.01 

ε- decay 0.005 
Memory Size 
(experiences) 

10000 experiences 

 
These values have been selected based on 
different factors: The learning rate α is an 
important factor as it approximates a function to 
best map the inputs to outputs in Neural 
Networks. However, a large learning rate will 
make the system faster. However, this is not our 
target, as the proposed model is concerned with 
future rewards and not immediate rewards. 
Hence, the system is tested with a small learning 
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rate, so the system will provide more optimal 
values but will take longer, which is expected. 
Regarding the discounted factor γ, the value is set 
based on the immediate or future rewards. If γ = 
0, this means that we care more about immediate 
and current rewards and if γ = 1, this means we 
care more about the future and long-term 
rewards. So, in this test, the discounted factor γ is 
set to 0.99, which means we are looking for the 
future reward. 
 
6.2 Performance Metrics  
The performance of the proposed migration 
algorithm is studied and compared with the 
performance of existing algorithms. The following 
performance metric is compared: 
Total Average Reward: The goal of migration 
is to maximize the total or cumulative reward. 
The reward is represented as  

 ℛ = 1
𝒯𝒸
⁄         (16) 

6.3 Results Analysis 
The results obtained through the simulation 
measured the effectiveness of VM_MIG in terms 
of total average reward. The following sub-
sections discuss the results. 
Figure 1 shows that the reward varies between 
different stages of the system's learning process. 
The number of fog nodes used here is two, four, 
and sixteen. 
  

 
Figure 1. Reward per episode vs the number of fog 

nodes. 
 

 

 
Figure 2.  Reward per episode vs the number of fog 

nodes. 
 
 

 
Figure 3.  Reward per episode vs the number of fog 

nodes. 

In this scenario, the effect of the number of fog 
nodes in making the decision to migrate is tested. 
It runs the experiment through 2,4,8, and 16 fog 
nodes while fixing the episodes.  

Looking at Figure 2, it is realized that almost 
all the systems started with less reward. It is 
noticed that when there is no migration, the 
system starts with normal performance, and then 
it decreases from 14 at the beginning to 10 at the 
end of the episodes. Further, it is noticed that 
when only mobility is considered, the reward will 
slowly increase. However, by looking closely, it is 
noticed that all four systems have almost similar 
values at the beginning, and then VM_MIG 
recorded a sharp increase after episode 50 of the 
learning lifecycle. This is because, in the 
VM_MIG system, the immediate result is not the 
main concern; rather, the goal is to target future 
rewards and results.  

It can be concluded that the "mobility-based" 
and the "no migration" algorithms behave 
similarly because mobility, in this case, does not 
have a significant impact on the system. 
Furthermore, the "load-based" algorithm 
demonstrated good performance compared to the 
"mobility-based" and the "no migration" systems, 
as the load keeps changing dynamically. However, 
as VM_MIG also considers the load but with a 
threshold value before deciding, it outperforms 
the other three systems. Figure 2 shows that the 
VM_MIG system outperforms the mobility-
only-based system by 97% in episode 200.    

Figure 3 shows that when there is no migration 
decision taken, the reward will be at extremely low 
values. However, mobility-based systems show 
better performance when applied to four nodes 
because the chance of mobility is increased, so the 
system can learn better and make better 
decisions. Mobility-based and load-based 
recorded nearly the same values in the final stage 
of learning, which is almost 500. Looking at 
VM_MIG, it records better performance in terms 
of reward, starting from 180 at the beginning to 
1500 at episode 200. It outperforms mobility-
based and load-based systems by 66.6%.  

By applying all the systems to eight fog nodes, 
all systems perform better by achieving lower 
latency as the options are larger, and the VM can 
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be migrated to any available fog node. However, 
looking closely at the figure, it is realized that 
VM_MIG also outperforms the other systems. In 
episode 50, the VM_MIG system recorded a 
sharp increase in reward to reach 2000, which it 
maintained for the remainder of the simulation. 
This represents a 75% improvement over the 
other systems.  

Further, even when the number of fog nodes is 
increased to 16, all systems perform better by 
achieving lower latency as the options are larger 
and the VM can be migrated to any available fog 
node. It is realized that VM_MIG outperforms 
the other systems, although it recorded a sharp 
decrease in episode 50 as it is still in the learning 
phases. Later, it recorded a sharp increase after 
episode 50 to reach 2500 in episode 100 and 
continues to have the same reward value. This 
shows an 80% improvement rate compared to 
other systems. (Figure 4) 

 

 
Figure 4. Reward per episode vs the number of fog    
-------------nodes 

CONCLUSION 

In this paper, a reinforcement learning-based live 
Virtual Machine Migration system is presented. 
This system considers multiple factors when 
deciding whether to migrate the virtual machine 
from one node to another, as opposed to relying 
on a single factor. VM_MIG considers the load of 
the fog nodes with a pre-defined threshold value 
and the mobility of the end-users. By applying RL 
algorithms, the VM_MIG aims to achieve low 
latency.  

The system was evaluated against two existing 
systems, each of which considers only one factor 
in deciding about migration. One of the two 
systems considers only the mobility factor, and 
the second one considers only the load factor. 
VM_MIG outperforms these existing systems in 
terms of total average reward. The system 
VM_MIG outperformed the mobility-only-based 
system by 97% when tested with two fog nodes 
and by 80% when tested with sixteen fog nodes in 
terms of average reward. Further, the proposed 
system outperforms the load-based system. 50% 
and 75% when the environment consists of two 
fog nodes and sixteen fog nodes, respectively. 
According to these results, it is concluded that 
considering multiple factors enhances the overall 
system performance in terms of the average 
reward in the long term. 

 
 

LIMITATIONS AND FUTURE WORK 

Although the proposed system solves the issue of 
late and early handover and improves the 
decision-making about whether or not to migrate 
virtual machines by combining mobility and load 
into a single comprehensive model to reduce 
disruptions to time-critical applications, it has 
some limitations.  
1. Fixed fog node locations: The fog nodes are 

assumed to have fixed locations in a square 
grid. This might cause limited scalability in a 
fog environment. As the number of fog nodes 
increases and the network expands, the fixed 
grid might limit the growing demands.  

2. Homogenous fog node configurations: The 
fog nodes are assumed to have the same size 
and configuration and host a fixed number of 
virtual machines. Homogenous fog nodes 
may not easily adapt to the changing demands 
in the dynamic environment. 

Based on the above limitations, possible future 
work directions are:  
1. Explore adaptive and dynamic placement 

strategies for fog nodes to optimize resource 
allocation. By focusing on developing more 
flexible and adaptive approaches. This can 
better adapt to any changes in the network 
and fog environment.  

2. Investigate techniques to accommodate 
diverse fog node configurations and 
efficiently allocate resources on their 
capabilities, allowing adaptive resource 
allocation and, hence, better decisions on 
migration.  

 
 

CONFLICT OF INTEREST 

The authors declare that there are no conflicts of 
interest regarding this publication.  
 

FUNDING 

No Funding was received for this system.  
 

REFERENCES 

Agarwal, S., Yadav, S., & Yadav, A. K. (2016). An 
Efficient Architecture and Algorithm for 
Resource Provisioning in Fog Computing. 
International Journal of Information 
Engineering and Electronic Business, 8, 1, 
48–61.  

Akintoye, S. B., & Bagula, A. (2019). Improving 
quality-of-service in cloud/fog computing 
through efficient resource allocation. Sensors 
(Switzerland), 19, 6.  

Bao, W., Yuan, D., Yang, Z., Wang, S., Li, W., 
Zhou, B. B., & Zomaya, A. Y. (2017). Follow Me 
Fog: Toward Seamless Handover Timing 
Schemes in a Fog Computing Environment. 
IEEE Communications Magazine, 55, 11, 72–
78.  

Basu, D., Wang, X., Hong, Y., Chen, H., & Bressan, 
S. (2019). Learn-as-you-go with Megh: 

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

R
ew

ar
d

 (
1

/s
ec

)

Episodes (Time-steps) - Sixteen Fog Nodes

No migration Mobility based

Load Based VM_MIG



Journal of Engineering Research, 2023, 20(2),113-122  

 
 

122 
 

Efficient Live Migration of Virtual Machines. 
IEEE Transactions on Parallel and 
Distributed Systems, 30, 8, 1786–1801.  

Bittencourt, L. F., Lopes, M. M., Petri, I., & Rana, 
O. F. (2015). Towards Virtual Machine 
Migration in Fog Computing. Proceedings - 
2015 10th International Conference on P2P, 
Parallel, Grid, Cloud and Internet Computing, 
3PGCIC 2015, 1–8.  

Filiposka, S., Mishev, A., & Gilly, K. (2018). 
Community-based allocation and migration 
strategies for fog computing. IEEE Wireless 
Communications and Networking 
Conference, WCNC, 2018-April, 1–6. 

Goncalves, D., Velasquez, K., Curado, M., 
Bittencourt, L., & Madeira, E. (2018). 
Proactive Virtual Machine Migration in Fog 
Environments. Proceedings - IEEE 
Symposium on Computers and 
Communications, 2018-June, 742–745.  

Govindaraj, K., & Artemenko, A. (2018). 
Container Live Migration for Latency Critical 
Industrial Applications on Edge Computing. 
IEEE International Conference on Emerging 
Technologies and Factory Automation, ETFA, 
2018-Sept, iii, 83–90.  

Habibi, P., Farhoudi, M., Kazemian, S., 
Khorsandi, S., & Leon-Garcia, A. (2020). Fog 
Computing: A Comprehensive Architectural 
Survey. IEEE Access, 8, 69105–69133.  

Hammoudeh, R. A. (2018). A Concise 
Introduction to Reinforcement Learning. 
Journal of Reinforcement Learning 1(1), 1-11. 

Han, M. (2018). Reinforcement Learning 
Approaches in Dynamic Environments 
[Doctoral dissertation, ParisTech]. HAL 
Archives Ouvertes. HAL Id: tel-01891805. 

Machen, A., Wang, S., Leung, K. K., Ko, B. J., & 
Salonidis, T. (2018). Live Service Migration in 
Mobile Edge Clouds. IEEE Wireless 
Communications, 25, 1, 140–147.  

Osanaiye, O., Chen, S., Yan, Z., Lu, R., Choo, K. K. 
R., & Dlodlo, M. (2017). From Cloud to Fog 
Computing: A Review and a Conceptual Live 
VM Migration Framework. IEEE Access, 5, 
8284–8300.  

Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G., 
Longo, F., & Puliafito, A. (2019). Container 
migration in the fog: A performance 
evaluation. Sensors (Switzerland), 19, 7, 1–
22.  

Rahbari, D., & Nickray, M. (2019). Computation 
Offloading and Scheduling in Edge-Fog Cloud 
Computing. Journal of Electronic & 
Information Systems, 1, 1, 24–34.  

Rodrigues, T. G., Suto, K., Nishiyama, H., & Kato, 
N. (2017). Hybrid Method for Minimizing 
Service Delay in Edge Cloud Computing 
Through VM Migration and Transmission 
Power Control. IEEE Transactions on 
Computers, 66, 5, 810–819.  

Roig, P. J., Alcaraz, S., Gilly, K., & Juiz, C. (2019). 
Modelling VM migration in a fog computing 
environment. Elektronika Ir Elektrotechnika, 
25(5), 75–81.  

Rosário, D., Schimuneck, M., Camargo, J., Nobre, 
J., Both, C., Rochol, J., & Gerla, M. (2018). 
Service migration from cloud to multi-tier fog 
nodes for multimedia dissemination with QoE 
support. Sensors (Switzerland), 18, 2, 1–17.  

Tang, Z., Zhou, X., Zhang, F., Jia, W., & Zhao, W. 

(2018). Migration Modeling and Learning 
Algorithms for Containers in Fog Computing. 
IEEE Transactions on Services Computing, 
14, 8.  

Wang, J., Hu, J., & Min, G. (2020). Online Service 
Migration in Edge Computing with Incomplete 
Information: A Deep Recurrent Actor-Critic 
Method. 1–12.  

Wang, S., Xu, J., Zhang, N., & Liu, Y. (2018). A 
Survey on Service Migration in Mobile Edge 
Computing. IEEE Access, 6, 23511–23528.  

Yi, S., Hao, Z., Qin, Z., & Li, Q. (2016). Fog 
computing: Platform and applications. 
Proceedings - 3rd Workshop on Hot Topics in 
Web Systems and Technologies, HotWeb 
2015, 73–78.  

Zhang, C., & Zheng, Z. (2019). Task migration for 
mobile edge computing using deep 
reinforcement learning. Future Generation 
Computer Systems, 96, 111–118.  

Zhang, F., Liu, G., Fu, X., & Yahyapour, R. (2018). 
A Survey on Virtual Machine Migration: 
Challenges, Techniques, and Open Issues. 
IEEE Communications Surveys and 
Tutorials, 20, 2, 1206–1243.  

Zhou, Z., Liao, H., Zhao, X., Ai, B., & Guizani, M. 
(2019). Reliable Task Offloading for Vehicular 
Fog Computing under Information 
Asymmetry and Information Uncertainty. 
IEEE Transactions on Vehicular Technology, 
1–1.  

Zhu, Q., Si, B., Yang, F., & Ma, Y. (2017). Task 
offloading decision in the fog computing 
system. China Communications, 14, 11, 59–
68. 

 





 

 

 


