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ABSTRACT: Virtualization is an  essential
mechanism in fog computing that enables elasticity
and isolation, which in turn helps achieve resource
efficiency. To bring high flexibility in a fog
environment, migration of virtual machines from
one node to another is required. This can be achieved
by live virtual machine migration to reduce
downtime and delays. Multiple existing studies have
discussed live virtual machine migration in a fog
environment. However, these studies have some
limitations, such as pre-migrating the virtual
machines based on mobi{)ity prediction only or based
on the load only, which causes an issue of late and
early handover. Due to the dynamic nature of fog
environments, VM migration decisions require
consideration of multiple factors. Hence, there is a
need to develop a system that considers multiple
factors to decide to migrate a virtual machine or not
to solve the issue of early and late handover. This
study proposes a novel approach to live virtual
machine migration that applies reinforcement
learning for decision-making. Experiments show
that the proposed approach significantly reduces the
latency of time-critical applications. The proposed
system, outperforms the existing systems in terms of
total average reward. The system outperformed
the mobility-only-based system by 97% when tested
with two fog nodes and by 80% when tested with
sixteen fog nodes in terms of average reward.
Further, the proposed system outperforms the load-
based system by 50% and 75% when the
environment consists of two fog nodes and sixteen
fog nodes, respectively. This proved that considering
multiple factors in deciding virtual machine
migration in a fog environment can be effectively
applied in time-critical applications to reduce
latency.
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INTRODUCTION

According to (Giri et al., 2017), fog computing is
an architecture that uses one or more near-edge
devices to carry out some amount of storage,
communication, control, configuration, and
management of the cloud. It does not substitute
the cloud but extends its functionality near the
edge of users. Fog means "a cloud closer to the
round" and is a new technology that extends - but
oesn't substitute - the cloud computing services
to the end users (Mouradian et al., 2018). Fog
provides different facilities and services to the
users, i.e., latency-aware, geo-distributed, and
mobility-aware services.
Fog computing was initially designed and

introduced to  support latency-sensitive
applications. This includes Smart City
applications, Intelligent Transportation Systems,
Augmented Reality, Healthcare, Tele-

Surveillance, Smart Grid, Smart Agriculture,
Smart Waste Management, Smart Water
Management, Smart Retail stores, etc. (Haouari et
al., 2018) (Naha et al., 2018),(Yi et al., 2016),(Hu
etal., 2017).

Virtualization plays a crucial role in efficient
resource allocations to end users in fog computing
scenarios. However, improper placement of
virtual machines on physical machines can lead to
performance degradation(Akintoye & Bagula,
2019). In the context of a fog scenario, the
importance of considering performance and
minimizing downtime becomes even more
critical(Yi et al., 2016). Hence, it could be
important to move the virtual machines from one
fog node to another to ensure a smooth transition
and no disturbance to the real-time
applications(Zhou et al., 2019; Bittencourt et al.,
2015; Govindaraj & Artemenko, 2018; Puliafito et
al., 2019; Rodrigues et al., 2017; Roig et al., 2019;
Rosério et al., 2018; J. Wang et al., 2020; F. Zhang
et al., 2018).

In the area of fog computing, determinin
whether or not to  migrate virtua
machines/services from one node to another is a
critical decision(Osanaiye et al., 2017), and the
research community and industry have developed
various mechanisms to make this decision
effective based on different factors and
parameters(Agarwal et al., 2016; Filiposka et al.,
2018; Govindaraj & Artemenko, 2018; Habibi et
al., 2020; Live Virtual Machine Migration to
Support Real-Time IoT Applications in
Heterogeneous Fog Environment V3, n.d.;
Machen et al., 2018; Rahbari & Nickray, 2019;
Zhu et al., 2017). Several studies have addressed
this issue by developing different migration
strategies based on user mobility, load balancing,
energy saving, etc. In this context, reinforcement
learning can be applied to make decisions more

effective.

In previous studies, researchers explored the
live virtual machine migration in the fog
computing  environment. Some  studies
(Goncalves et al., 2018) and (C. Zhang & Zheng,
2019) only migrated virtual machines in advance
based on mobility predictions. As a result, it is
difficult to make an accurate decision on whether
or not to migrate the VM based on mobility
prediction only, as the fog environment is

dynamic and the users' movements cannot be
accurately predicted, which could lead to the issue
of early handover and wrong decision-making.
Other studies consider the load as a factor in
deciding the migration of the VMs and only
migrate the VMs when the machines become
overloaded (Tang et al., 2018). As a result, this
might lead to the issue of late handover and may
cause a disturbance to the real-time application
and hence increase the delay.

Load and mobility are critical factors when
deciding on VM migration because they are
among t%w most influential factors that impact the
performance, resource utilization, and latency
requirements of real-time applications, as
mentioned before.

In a fog environment, the joint consideration
of both mobility and load factors with threshold
values significantly impacts the decision-making
process of whether or not to migrate the VMs.

However, previous studies have applied
conventional algorithms as well as artificial
intelligence-based algorithms to design their
model. The study (C. Zhang & Zheng, 2019)
proposed deep Reinforcement Learning in a
Mobile Edge Computing system to decide the
migration of VM. In the study (Basu et al., 2019),
the authors applied RL to utilize the load details
as a parameter to determine whether or not to
migrate the VMs. RL agents monitor the
machines' loads in the environment and decide on
the migration. (Goncalves et al., 2018) I proposed
using Integer Linear Programming (ILP) to find
out the movement of the users and decide the
migration accordingly.

For delay-sensitive applications in a fog
environment, it is important to consider the high
dynamic level of the environment and the
complexity as a fog environment is surrounded by
many factors. Delay is critical to the real-time
application, and hence, the algorithms used to
decide the VM migration should be carefully
chosen and designed to achieve the possible
reduction in latency and response time. It is worth
noting that the fog environment is dynamic,
consists of different types of devices, is highly
affected by the users' mobility, and the load factor
is critical in making decisions(Hammoudeh Rlr,
2018). Therefore, it is suitable and advised to
design a model to decide the VM migration while
applying RL algorithms. In Reinforcement
learning, the system doesn't have a set of data to
train, but rather, it learns by trial and error (Han,
2018). The system learns from the interaction
with the environment to achieve the goal, which is
usually maximizing the reward in the long term.
RL is suitable for solving complex but narrow
problems where the dynamic and large
environment is not a problem and the input of the
surrounding area is not expected, but there is a
goal to be achieved. Hence, in this paper, we
propose a reinforcement learning-based approach
to improve the decision-making about whether or
not to mifrate virtual machines. This pro(]i)osal
aims to solve the issue of early and late handover
of virtual machines. This is done by combining
mobility and load factors into a single
comprehensive model to reduce disruptions to
time-critical applications. By combining both
factors in one model, the RL can make a more
informed and context-aware decision.
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Table 1. Comparison between some existing studies and our proposed research.

Reference study Timing of the designed solution Decision to be taken
Reactive Proactive When Where

(Bao et al., 2017) ~ N

(Goncalves et al., 2018) ~ N N

(C. Zhang & Zheng, 2019) ~ N

(Basu et al., 2019) N N

Proposed Research ~ N

This comprehensive approach can lead to
improved performance optimization and
reduction of latency for time-critical applications.
Further, the model can become more adaptive to
the changing conditions in the fog environment
and can adjust the VM migration decision
accordingly. This model enhances the
performance, adaptability, and synergy between
the incorporated factors. The rest of this paper is
organized as follows: Section 2 provides an
overview of the related work. Section 3 presents
the system architecture and model. In section 4,
the problem formulation is outlined. The RL
algorithm is detailed in section 5. Section 6
illustrates the evaluation of the proposed model.
The paper concludes in section 7, tollowed by a
discussion on limitations and future work in
section 8.

RELATED WORK

A study (Bao et al., 2017) proposed a framework
to support smooth handover between the fog
nodes in a timely manner. In this study, the
authors are following the principle of "Follow me",
similar to follow me cloud, which aimed at a
smooth migration from one data centre to another
(S. Wang et al., 2018). This proposal results in a
reduction in the service

Interruption time and downtime. The study
%uarantees service continuity and reduces the
atency during handover. It proactively makes the
decision to migrate to tEe virtual machine.
However, the shortcoming of this research is that
this method is good in scenarios in which the
users' movement and the movement are fixed.
There is no specific algorithm used in this
proposal, only a framework to measure the
strength of the signal in the access point and then
migrate it. Further, the study considers only one
factor in deciding following the user movement
and not the load of the source and destination
machines, which might lead to wrong decision-

making.

A §ifferent approach is used in the study
(Goncalves et al., 2018), where the proposal used
Integer Linear Programming (ILP) to decide when
to migrate the VMs. It takes the mobility
prediction and starts the process 5 minutes before
the user's movement. They used ILP to optimize
decision-making. The objective functions are 1)
Maximizing the accepted requests and 2)
Minimizing the latency. However, the limitation
of this study is that it proactively migrates the VM
based on mobility prediction. This might lead to
early handover and lead to a wrong decision.

The study doesn't consider another factor in
deciding when to migrate, which might also lead
to inappropriate decisions as the fog environment
is surrounded by multiple factors.

A study (C. Zhang & Zheng, 2019) proposed deep
Q-network for task migration in Mobile Edge
Computing to decide whether to migrate the
virtual machine. This research applies the
reinforcement learning algorithm to learn the
environment and then make the decision. In this
research, mobility is the main trigger for
migration, where a fog node master learns the
status of the environment, takes action
accordingly, and then gets a minimum cost value.
This stugy shows better improvement compared
to conventional algorithms, however, but it only
considers one factor, which might lead to
inappropriate decisions in the fog context.

In the study (Basu et al., 2019), the authors
considered the load factor in making migration
decisions without considering a threshold, and
they migrated virtual machines after the fog node
was already overloaded. RL can utilize the load
details as a parameter to determine whether or
not to migrate the VMs. RL agents can monitor
the machines' loads in the environment and
decide on the migration. Considering the load
factor while adopting RL, facilitating the load
balancing, and
distributing the workload. It also helps in
improving efficiency. However, waiting for the
system to be overloaded and then deciding to
migrate may cause an issue of late handover and
hence incur a delay.

The following ta%le summarizes the existing
studies in this context in comparison with the
proposed research.

SYSTEM MODEL

115

The proposed system is designed for a square
area. The area size is assumed to be 50 m x 50 m.
This site has been chosen because the coverage of
the network in the fog nodes could reach a
maximum of 60 meters. So, to ensure that all fog
nodes are connected, this area size is chosen.
Before discussing the model, it is important to
define some of the notations and variables used in
the system model and problem formula. Table 2
defines the important notations and their
abbreviations:
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Table 2. List of notations applied in designing the
system model.

Symbol The meaning
F fog node set
] number of the fog nodes
Fl represents a j* fog node with
(Lak'Lol) latitude and longitude positions of
k and 1, respectively, ranging from
1tol
i The virtual machines set in fog
v <F(La 1o l])) node j
0 ?umb((elr of virtual machines in one
og node
vl Represents the is the qt* VM

running on the fog node F (’L Liof)
a, Loy

U Set of users
M number of users
U1 ihuser (i € [1m])

La,, Lo, Represents the latitude and
longitude coordinates of the user's
current location, respectively.

La,, Lo, Represents the latitude and

D((Lag, Lo.),

longitude coordinates of the user's
new location, respectively.

The distance that the user will
move from its current location

La,, Lo . .
(Lan,Lon)) (Lag, Lo.) to its new location
(Lay,, Loy).
C, the capacity of the ith fog node
Vp, the total number of virtual CPUs in
¢ fog node i
pi the number of Physical CPUs in the
fog node i
ct the total cores in each physical CPU
of fog node i
Vepy the number of assigned virtual
CPUs per VM
L, The load of the ith fog node
thpy the number of virtual CPUs
running on fog node 1
(7 total cost
or) migration Cost
€, computation Cost
Si state-space at a time ¢
R the reward of the system
THg, the threshold of the load

In this model, the set of J fog nodes is assumed
with locations given by their longitudes and
latitudes in a square grid with grid cells kth row

and [t column ranging from 1 to I
{(La},Lo}):k,1 = 1,---,1 } for the j*" fog node. It is
represented in equation 1.

Each fog node is equipped with GPS to define its
location in correspondence to the latitude and
longitude values. Thence, the set of fog nodes is
represented as

T = {F(}La;(,Lo{) :j = 11“‘1]; k;l = 11'”11}' (1)

In other words, F is a collection of ] tuples, where
each tuple consists of a pair of latitude and
longitude values indexed by kandl, where

!, represents a j™* fog node with latitude
(Lak,Lol)

and longitude positions of k and [, respectively,
ranging from 1 to I.

For example, F(56‘7 represents the fifth fog node,
which has a latitude value of 6 and a longitude
value of 7.

Each fog node hosts a set Q virtual machines of all
have the same size and configuration, denoted by
equation 2.

V(Hogu) = ot 1= 20} @

where v/ ; , Represents the is the ¢* VM
(Lak,Lol),q
running on the fog node F/ ;  And Q is the
Lak,Lol)
total number of the VMs running on that fog node.
Hence, the above representation represents all
VMs running on the specific fog node.
Each fog node has a controller which handles the
details of fog nodes in a certain coverage area.
Let's assume each fog node covers 60 meters only
in all directions. This assumption is based on the
fact that wireless coverage can vary between fog
nodes, but an average cover range of 60 meters is
typical for fog nodes, which have a range of
around 100 meters. However, the wireless signal
could be weakened as they travel through the air
and would become too weak beyond a certain
distance. Hence, by setting the coverage area of
each fog node to 60 meters, it can be ensured that
the fog nodes are close enough to communicate
effectively to provide enough coverage to serve the
needs of the users.

The controller in each fog node senses the
environment and maintains details about the
environment, including the load, users'
information, and location details. There are M <
Q users. Each user may be connected to at most
one of the virtual machines at any point in time,
as shown in equation 3.

U={udih0 g =1, Qi = 1,.., M} (3)
In this notation, U represents the set of M users.
Lag, Lo, Represent the latitude and longitude
coordinates of the user's location, respectively.
Jj, k and [ represent the fog node where the user is
connected, and j is the index of the fog
node, k and | are the indices of the virtual

machine within the fog node. q; Represents the
index of the virtual machine that the user is

connected to, which ranges from 1 to Q. In other

words, U is a set of M tuples where each tuple
contains information about the user's location
and which virtual machine they are connected to
(if any).

Each mobile user is equipped with a GPS system
to define its location. It is assumed that all mobile
users are connected to fog nodes using wireless
connections. It is also assumed that all fog nodes
are connected using wireless connections. The
user will move a distance ((La, Lo.), (La,, Lo,))
from its current location (La.,Lo.) to its new

location (La,, Lo,).
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Algorithm 2: Exchange the
information between the fog nodes.

1. Begin the procedure
2. For each fog node F in the system:

3. Calculate the Euclidean distance
between F and every other fog
node in the system

4. Store the distance in M
5. If M is less than or equal to 60 m
6. Add the distance value to F's
memory
7. End If
8. End For
9. End the procedure
3.1Fog Node Structure
The followir(lig defines the structure of the fog
nodes:

¢z, The capacity of the fog node: In our
; ; !
proposed scenario, the number of virtual
machines as a parameter to find the
capacity of the fog node is taken by
ignoring other factors and processes that
need to be run on the fog node.

Hence, the capacity is defined as the total
number of VMs that can be run on the
machine. It is calculated as the number
of processors and cores available in the
fog node assigned to the virtual
machines. It is assumed that all VMs
have the same CPU allocation.

Vp, = Pl x C (4)
Where P! Is the number of Physical

CPUs in the fog node, 7 and C* Is the total
number of cores in each physical CPU of
fog node i. Hence, the capacity of a fog
node is calculated as follows:

Cr, = Vp, [/ Vepu (5)
Where Vp, represented the total number

of virtual CPUs in fog node, i and v¢py Is
the total number of assigned virtual
CPUs per VM.

£, The load of the fog node: It is the

* number of currently running VMs.

However, for simplicity, this calculation

is done by i 1gh oring the other processes

running in_the fog node and assuming

that the only load of the fog node is the
virtual machine's load.

Lp, = ré‘Pl_]/vCPU (6)
Where, repy represents the number of
virtual CPUs running on fog node i and

vepy Represents the assigned virtual
CPUs per VM.

Initially, when the environment is initiated,
each fog node exchanges the information
messages regarding its location index values (La
and Lo) with all nodes in the area. At startup, the
fog nodes will acquire the values of their location
positions in terms of latitude and longitude. It is
assumed that all fog nodes are fixed in their
locations. Then, the fog nodes will exchange

information. The following section explains how
the nodes exchange information.

Algorithm 1: Calculate the location
index of each fog node (Environment
Initialization).
1. Initialize ()
2. Begin
3. Forj=1toJ
4, Initialize La and Lo location values
for fog node Fj
5. Store location in each node controller
6. End For
7. End
VM MIGRATION PROBLEM
FORMULATION

The migration of virtual machines has the benefit
of reducing the latency of real-time applications.
However, it a wrong/late decision is taken and an
unsuitable migration strategy is applied, this may
result in a longer time to accomplish the real-time
applications. Therefore, with the objective of
finding the best strategy, Reinforcement Learning
is app%ied to reach the optimum decision. Taking
the load, the location of the fog nodes and the
movement of the users into account, the problem
can be formulated as follows:

Total Cost (7,): The total cost consists of two
parts: The Migration Cost M, and the
Computation cost C, .

Migration Cost (M),): It is the delay incurred by
the network to migrate the virtual machine. This

includes the transmission delay. 7., and the

signal delay Sg.;q, . The processing delay of the
VM transfer is ignored as the main concern is to
calculate the delay incurred by the media of
transfer and the VM size and as the processin
delay is minimal due to the use of high-spee
processors. It can be calculated as:

g—;ielay = .;_i 7
Where, v; is the size of the virtual machine (in
bits) and B,, It is the bandwidth of the network
(in bits ger second). The signal delay can be
calculate

Sdelay — (8)

v
Where, Dy, Is the distance between the user's new
location to the source fog node or to the
destination fog node based on user movement,
which is measured in meters, and v is the media
speed, which is in this case measured in
meters/second.
Hence, the migration cost is
M, = Tdelay + Sdelay 9
Computation Cost (C,): It represents the cost
of the computational resources required to
perform the migration process. This also has a
Eosmve relationship with the load. If the load is
1gh the computational cost inside a particular
node wﬂlp be high and vice versa. It is

ca culated as:

C,= Lp, XP (10)

where L Is the load of the fog node and P; It
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is the processing speed of the node in terms of
VMs/sec, which is the inverse of the processing
time of each VM. Hence,
Jo= M.+ C. (11)
In this case, the computational cost must be
compared to whether the VM is not migrated and
if it is migrated to a destination fog node.
The system evolves over time into a set of

infinite episodes T = {1, 2,..., ©}. At every episode
(i.e., time t), thg user u; will be connected to one
fog node (say F/). Let us assume that the fog node

where the VM will be migrated is F/’. The system
state is defined using two parameters: The load

difference state (LD) between a pair of fog nodes
(F/, F/"), and the distance state for the user u;

gLCi) to the source fog node and to the destination
og node. LD (i.e., the load difference state

between F/and F/' This can be defined as follows:

J Jjr —
LD F Laj ,Loj ! F Laj’ ,Loj’ -
KU ] kr=tu )
. ] ]I
(0' lf LF(La{c,Lolj) > LF(La{;’,,Lolj,’)'
1, lf LF(La{;,LO{) —_ LF(Lai’,,LOlj,,)’ (12)
if LF"L \ < LF”

jr g J!

J
Lak,,Lol,

a{(,Lol)

> ( (tafy1ol})

Further, LC; (i.e., the distance state for the user u;)
will be defined based on the distance between the

user's new location and the fog nodes F/ and F/'.
Therefore, a new parameter is introduced to
represent the user's new location, denoted as u’,
which consists of the latitude and longitude values

of (Lay,Lo,’). Hence, LC; This can be expressed
as follows:

0, if d(®,u")>d(F ),

1, if d(F,u) =d(F',u'), (13)

2, if d(F,u) <d(F',u)
The overall state of the system at time ¢ can be
written as:
andS; = {(LD, LC;)}, where S,is state space at time
t and,
LD = 0, one or 2, are the possible states of the
load difference between fog node pairs (F/,
Fi")
LC; = 0,1 or 2 are the possible states of the
distance for the user u;. It is defined based on
the distance between the user's new location
and the fog nodes. F/ and F/' .
Hence, the possible state space could be re-
written as:

LC;

(0,0),(0,1),(0,2)
(1,0),(1,1),(1,2)
(2,0),(2,1),(2,2)

St

At any time ¢, the fog node controller, which in the
roposed model represents the reinforcement-
earning

an agent will take action to migrate or not. The

action is denoted. A, € {0,1}. A value of one

means migrate, and a value of zero means do not

migrate. Therefore, the system will generate a

state-action pair. (S;, 4;).

Reward: This research aims to reduce the
total cost of accomplishing tasks for mobile users
and maximize the reward. The reward can be
defined as the minimal cost of accomplishing the
tasks, which is defined in this scenario as the total

cost. (7). The reward is represented as follows:
rR=1/7 (14)

There is an inverse relationship between the
reward and the total cost. If the total cost is high,
the reward is less and vice versa.

ALGORITHM AND AGENT TRAINING

To start with, the system proposed in this paper
will be referred to as VM__MIG from now on.
Next, the load threshold will be defined. The load
threshold is the percentage of the fog node
utilization that should not be exceeded. If the load
threshold is exceeded, virtual machines should be
migrated. A load threshold is necessary to prevent
fog nodes from becoming overloaded and
negatively impacting the system's performance. If
a fog node's ﬁ)ad exceeds a certain threshold, it
may begin to delay responses, resulting in
degraded user experience and decreased system
performance. By setting a threshold for the load
on a fog node, the system can be designed to
migrate virtual machines to other nodes before
the load becomes too high. This can help balance
the load across the fog nodes, preventing any node
from becoming overloaded and avoiding
performance degradation. Additionally, setting a
threshold can help optimize resource utilization
and reduce energy consumption by ensuring that
nodes are not operating at higher than necessary
loads. The values range from 0% to 100%. If the
threshold is set too low, it can lead to degraded
system performance and increased overhead due
to VM migration. On the other hand, setting the
threshold too high can cause the fog node to delay
the migration, potentially affecting the experience
of users running real-time applications. In this
proposed scenario, the threshold of the load for
any fog node is set as follows:

THL, =3Cr, (15)
The flollowing algorithm describes how the system
will learn whether to migrate or not based on the
Reinforcement Learning setup:

Before looking at the algorithm, some set of
terminologies are defined in table 3.

EVALUATION RESULTS
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In this section, the results of a simulation-based
performance evaluation to assess the effectiveness
of the proposed algorithm are presented and
compared with existing algorithms. The
simulation was implemented in the MATLAB

R2021b environment, which includes
Reinforcement Learning Applications that
facilitate the simulation of reinforcement

learning-based research.



6.1 Experiments Settings

In this evaluation, a comparison of the proposed
algorithm (VM_MIG) with the following
algorithms is done:

1. When no migration decision is made, this is
done because the VM_MIG system must be
tested against the systems that do not make
any migration decision based on system
efficiency.

The proposed model is compared with the
study (C. Zhang & Zheng, 2019), where the
authors use only the mobility factor to decide
about migration. This is done because this
study considers VM and task migration in an
environment similar to ours, which is edge
computing, by adopting RL.

The proposed system is also compared to the
study (Basu et al., 2019), where the authors
use the load factor to make migration
decisions without considering a threshold.
They migrate virtual machines after the fo
node is already overloaded. The propose
study decides the migration based on multiple
factors, including mobility and load, while
considering a threshold value of the load
before deciding on the migration.

Table 3.List of notations used in Reinforcement

Learning Algorithm.
Notation Definition

Capacity A number

(N

replay Replay Memory in the RL setting

memory allows the agent to learn from past

™M) experiences instead of only
learning from its most recent
experiences.

Q value Q-value  function = with its

with @ parameters initialized to the value

weight of 6. The Q-value function is
updated during the Ilearning
process to better approximate the
true Q-values for gifferent states
and actions.

Q value Target Q-value function. This is a

with 8 co%y of the Q-value function that is
updated less frequently, typically
after a certain number of
iterations.

Y A discounted rate is a factor used
to balance the importance of
immediate rewards versus future
rewards. It is represented by the
symbol y (gamma) and is a value
between 0 and 1.

learning It controls the rate at which the

rate a agent learns from new experiences
and determines how much weight
should be given to new
information.

exploration The probability that an agent will

rate e choose a random action instead of
the action that it believes to be the
best based on its current

knowledge or policy.

Algorithm 3: Virtual Machine
Migration in Fog Environment Using
Reinforcement Learning

1. [Initialize a replay memory (M) to
capacity N

Initialize Q value with 8 weight,
Initialize the target Q value to
Initialize = value randomly.
Initialize y

Initialize learning rate «

Set update steps U,

Set Batch size

Set exploration rate €

. The set decay rate of €

. Whilet<ow:
Generate random number = from [0,1]
Calculate TH, FiAccording toeq. (10)

If L, reaches, TH, Then:
J

Calculate LC;

If d(F/,u’) = d(F/’,u') Then:
Calculate Le, According to eq. (3)

If L, > Lp, Then:

Migrate the VM

Else:

Calculate the total cost of migration.

. If the Total Cost of migration is higher
. than the total cost of no migration, then:
. Don't Migrate VM

. Else:

. Migrate VM

End If

End If

End If

End While

XN h W REEEOXNNTRBDN

Table 4 shows the configuration parameters of the
simulation process.

Table 4. The configuration parameters for the

simulation
Parameter
Sample Time
Maximum Episodes
Maximum Episodes
Length

Value

5 seconds

200, 500, 1000
100 time-steps

« — Learning Rate 0.01

y — Discounted Factor 0.99

Batch Size 64

e- start 1

€- min 0.01

e- decay 0.005

Memory Size 10000 experiences
(experiences)
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These values have been selected based on

different factors: The learning rate o is an
important factor as it approximates a function to
best map the inputs to outputs in Neural
Networks. However, a large learning rate will
make the system faster. However, this is not our
target, as the proposed model is concerned with
future rewards and not immediate rewards.
Hence, the system is tested with a small learning
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rate, so the slystem will provide more optimal
values but will take longer, which is expected.

Regarding the discounted factor y, the value is set

based on the immediate or future rewards. If y =
0, this means that we care more about immediate

and current rewards and if y = 1, this means we
care more about the future and long-term

rewards. So, in this test, the discounted factor vy is
set to 0.99, which means we are looking for the
future reward.

6.2 Performance Metrics

The performance of the proposed migration
algorithm is studied and compared with the
performance of existing algorithms. The following
performance metric is compared:

Total Average Reward: The goal of migration
is to maximize the total or cumtﬁative reward.
The reward is represented as

1

R = /Tc
6.3 Results Analysis
The results obtained through the simulation
measured the effectiveness of VM __MIG in terms
of total average reward. The following sub-
sections discuss the results.
Figure 1 shows that the reward varies between
different stages of the system's learning process.
The number of fog nodes used here is two, four,
and sixteen.

(16)

@m@m= NO migration — et \obility based

A== | 0ad based il \/V]_MIG

2500
2000

1500

Reward (1/sec)

1000
500

0
Episodes (Time-steps) - Eight Fog nodes

50 100 200

Figure 1. Reward per episode vs the number of fog

nodes.
=@=—No migration
e=¢==\obility based
__ 1500
(&)
b
E 1000
°
500 A A
:
[ 0 A
0 50 100 150 200

Episodes (Time-steps) - Two fog nodes

Figure 2. Reward per episode vs the number of fog
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nodes.

e=@== N0 migration e==t=m=\Mobility based
A== |0ad Based i \/M_MIG
2000
8 1500 S —
=
©
S 1000
[
o
500 / A :
0
0 50 100 150 200

Episodes (Time-steps) - Four Fog Nodes

Figure 3. Reward per episode vs the number of fog
nodes.

In this scenario, the effect of the number of fo
nodes in making the decision to migrate is tested.
It runs the experiment through 2,4,8, and 16 fog
nodes while fixing the episodes.

Looking at Figure 2, it is realized that almost
all the systems started with less reward. It is
noticed that when there is no migration, the
system starts with normal performance, and then
it decreases from 14 at the beginning to 10 at the
end of the episodes. Further, it is noticed that
when only mobility is considered, the reward will
slowly increase. However, by looking closely, it is
noticed that all four systems have almost similar
values at the beginning, and then VM_MIG
recorded a sharp increase after episode 50 of the
learning lifecycle. This is because, in the
VM_MIG system, the immediate result is not the
main concern; rather, the goal is to target future
rewards and results.

It can be concluded that the "mobility-based"
and the "no migration" algorithms behave
similarly because mobility, in this case, does not
have a significant impact on the system.
Furthermore, the "load-based" algorithm
demonstrated good performance compared to the
"mobility-based" and the "no migration" systems,
as the load keeps changing dynamically. However,
as VM__MIG also consic%ers the load but with a
threshold value before deciding, it outperforms
the other three systems. Figure 2 shows that the
VM_MIG system outperforms the mobility-
only-based system by 97% in episode 200.

Figure 3 shows that when there is no migration
decision taken, the reward will be at extremely low
values. However, mobility-based systems show
better performance when applied to four nodes
because the chance of mobility is increased, so the
system can learn better and make better

ecisions. Mobility-based and load-based
recorded nearly the same values in the final stage
of learning, which is almost 500. Looking at
VM_MIG, it records better performance in terms
of reward, starting from 180 at the beginning to
1500 at episode 200. It outperforms mobility-
based and load-based systems by 66.6%.

By applying all the systems to eight fog nodes,
all systems perform better by achieving lower
latency as the options are larger, and the VM can



be migrated to any available fog node. However,
looking closely at the figure, it is realized that
VM_MIG also outperforms the other systems. In
EISOde 50, the VM_MIG system recorded a
arp increase in reward to reach 2000, which it
maintained for the remainder of the simulation.
This represents a 75% improvement over the
other systems.

Further, even when the number of fog nodes is
increased to 16, all systems perform better by
achieving lower latency as the options are larger
and the VM can be migrated to any available fog
node. It is realized that VM_MIG outperforms
the other systems, although it recorded a sharp
decrease in episode 50 as it is still in the learning
phases. Later, it recorded a sharp increase after
episode 50 to reach 2500 in episode 100 and
continues to have the same reward value. This
shows an 80% improvement rate compared to
other systems. (Figure 4)

e=@==NOo migration e==g=m==Mobility based

A= | 0ad Based el \/\_MIG
_ 3000
§ 2500
< 2000
o
§ 1500
1000
500 —fh—A A
0 b’ ———o——o
0 50 100 150 200

Episodes (Time-steps) - Sixteen Fog Nodes

Figure 4. Reward per episode vs the number of fog
nodes

LIMITATIONS AND FUTURE WORK

Although the proposed system solves the issue of
late and early handover and improves the
decision-making about whether or not to migrate
virtual machines by combining mobility and load
into a single comprehensive model to reduce
disruptions to time-critical applications, it has
some limitations.

1. Fixed fog node locations: The fog nodes are
assumed to have fixed locations in a square
%I‘ld This might cause limited scalability in a

og environment. As the number of fog nodes
increases and the network expands, the fixed
grid might limit the growing demands.

Homogenous fog node configurations: The

fog nodes are assumed to have the same size

and configuration and host a fixed number of

Virtual machines. Homogenous fog nodes
not easily adapt to the changing demands

1n t namic environment.

Based on tge above limitations, possible future

work directions are:

1. Explore adaptive and dynamic placement
strategies for fog nodes to optimize resource
allocation. By focusing on developing more
flexible and adaptive approaches. This can
better adapt to any changes in the network
and fog environment.

Investigate techniques to accommodate
diverse fog node configurations and
efficiently allocate resources on their
capabilities, allowing adaptive resource
allocation and, hence, better decisions on
migration.

CONCLUSION
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In this paper, a reinforcement learning-based live
Virtual Machine Migration system is presented.
This system considers multiple factors when
deciding whether to migrate the virtual machine
from one node to another, as opposed to relying
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the fog nodes with a pre-defined threshold value
and the mobility of the end-users. By applying RL
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latency.
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and 75% when the environment consists of two
fog nodes and sixteen fog nodes, respectively.
According to these results, it is concluded that
considering multiple factors enhances the overall
system performance in terms of the average
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