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1.  Introduction

Although many codes for example Binary Coded
Decimal (BCD), Excess-3 Code, Hamming Code, Cyclic
Redundancy Code (CRC), Check Sum and many others
exist and are in use. But the Gray codes which are named
for Frank Gray who patented the use of them in shaft
encoders  (Gray, 1953) due to its attribute of single dis-
tance only, which avoids ambiguous switching situations,
is particularly used to handle safely and conveniently the
control problems. The term Gray code is sometimes used
to refer to any single-distance code, that is, one in which
adjacent code words differ by 1 in one digit position only,
This property can be seen in Table 1 which shows the
Gray codes for size n = 1 to 4 bits.

Unlimited applications are accounted for the Gray
code. Some of them are mentioned here as follows.
However, more can be  learned  through the references pro
vided  as  in  the  references  (Sundberg,  1975;  Ludman, 
1981; Er, 1984, and Proskurowski and Ruskey, 1985;
_____________________________________
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Lee,  1986;  Conway,  et al.  1989;  Skiena,  1990; Press,
et al. 1992; Etzion and Peterson, 1992; Hiltgen, et al.
1996; Savage, 1997; Ruskey, 1997; Guan and Dah-Jyu,
1998, Moshe and Tuvi, 1999; Black  Paul 2004; Alan and
Alessandro Mei, 2004; Jywe-Fei and Lai, 2005; Bitner, et
al. 2005).

Gray codes were applied to mathematical puzzles
before they became known to engineers. The Gray code
arises naturally in many situations. Gray's interest in the
code was related to what we would now call analog to dig-
ital conversion. The goal was to convert an integer value,
represented as a voltage, into a series of pulses represent-
ing the same number in digital form. The technique, as
described in Gray's patent, was to use the voltage being
converted to displace vertically an electron beam that is
being swept horizontally across the screen of a cathode
ray tube. The screen has a mask etched on it that only
allows the passage of the beam in certain places; a current
is generated only when the beam passes through the mask.
The passage of the beam will then give rise to a series of
on/off conditions corresponding to the pattern of mask
holes that it passes.
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Mechanical position sensors use Gray code to convert
the angular position (angle-measuring devices) of a shaft
to digital form. Gray codes were used in telegraphy. The
Gray code also forms a Hamiltonian cycle on a hypercube,
where each bit is seen as one dimension. In data transmis-
sion, Gray codes play an important role in error detection
and correction. Solving puzzles such as the Tower of
Hanoi and the Brain, the study of bell-ringing, analog-dig-
ital signal conversion, classifying of Venn diagrams, con-
tinuous space-filling curves, enhancing the resolution of
spectrometer for a satellite application, labeling the axes
of Karnaugh maps are the processes where Gray codes are
used due to its uniqueness.  Gray codes are also beneficial
in Genetic Algorithms due to its incremental change prop-
erty. Using Gray codes for addressing the memory results
in saving of the power because a few address lines change
as the program counter advances to the next location.
Also, Gray codes are extensively used by digital system
designers for passing multi-bit count information between
synchronous logic that operates at different clock frequen-
cies. In some numerical problems, Gray codes can be use-
ful in situations of looping over many values of a bit.
Furthermore, due to its attribute Gray code could be a
good choice for the search of the optimal test-sequences in
digital system testing. 

Hence it can be said that the Gray codes which were
originally designed to prevent spurious output from
electromechanical switches. Today they are widely used
to facilitate error correction in digital communications
such as digital terrestrial television and some cable TV
systems. 

Since the Gray code has enormous applications as men-
tioned above has many facet researches as is evident in
surveying the literature  (Gray, 1953; Sundberg,  1975;
Ludman, 1981;  Lee,  1986; Conway, et al. 1989; Skiena,
1990; Press, et al. 1992; Etzion Peterson, 1992; Hiltgen, et
al. 1996; Savage, 1997; Ruskey, 1997; Guan Dah-Jyu,
1998, Moshe and Tuvi, 1999; Black Paul 2004; Alan and

Alessandro Mei, 2004; Jywe-Fei and Lai, 2005; Bitner, et
al. 1976; Er, 1984; Proskurowski and Ruskey, 1985;
Ruskey, 1993; Dominique, 2000; Lassing, et al. 2003,
Goddyn and Gvozdjak 2003 and Vajnovszki and Walsh
2006).  It is clear through the literature survey that there
had been much discovered and written about the Gray
code; it is associated with many elegant circuits and algo-
rithms. However, the algorithms generating the Gray code
was still done with the crude techniques (Ruskey, 1993;
Dominique, 2000; Lassing, et al. 2003, Goddyn,
Gvozdjak 2003 and Vajnovszki and Walsh 2006).
Researches are available in the literature only to script the
faster codes but not much deviated from the existing crude
algorithms for generating the Gray codes. This paper pres-
ents a new concept of generating the Gray code of n-bit
size.  The developed algorithm is stemmed from the fact
of generating and properly placing the min-terms from the
universal set of all the possible min-terms (m0 m1 m2 ….
mN)  of  Boolean function of n variables, where, 0 < N <
2n-1. The resulting algorithm is in concise form and triv-
ial to implement. We designed an efficient algorithm to
write the codes which reduces the processing time and
memory space requirements.

2.  Gray  Code  Conversion  -  Conventional 
Approaches

No doubt, a simple recursive equation in mod (2) oper-
ation can convert a simple binary -…-8-4-2-1 codes to the
Gray one. The hardware is also simple which is based on
the bank of Exclusive-OR gates. To make the content of
this paper more readable to audience the description of the
generation procedure of the Gray code is given below: 

To convert a binary number [bn-1 bn-2 …. b1 b0] to its
corresponding Gray code (gn-1 gn-2 …. g1 g0), start at the
left with the bit bn-1 (the nth, most significant bit) and use
the following recursive equations.

gn-1 = bn-1 (1)

(2)

Or, in general for ith bit where i varies as, 2 < i < n, the
following Eq. (3) can be used.

(3)

The above Eqs. (1) and (3) are illustrated for a 3-bit
Gray code encoder in an example below. 

Example 1:

Let a Binary code [b3 b2 b1] = [1 0 0]. 

Base 
10 

Binary 
code 

Gray  
code 
4-bit 

Gray  
code 
3-bit 

Gray  
code 
2-bit 

Gray 
code 
1-bit 

0 0000 0000 000 00 0 
1 0001 0001 001 01 1 
2 0010 0011 011 11 
3 0011 0010 010 
4 0100 0110 110 
5 0101 0111 111 
6 0110 0101 101 
7 0111 0100 100 
8 1000 1100 
9 1001 1101 
10 1010 1111 
11 1011 1110 
12 1100 1010 
13 1101 1011 
14 1110 1001 
15 1111 1000 

 

 
 

Table 1.  Gray code patterns of size n = 1 to 4 bits

gn-2 = bn-1  ⊕  bn-2   

gn-I  =  bn-i+1 ⊕  bn-I  

So, g3 = b3 = 1; g2 = b3 ⊕ b2 = (1 + 0) mod 2 =1; g1 = 
b2 ⊕ b1 = (0 + 0) mod 2 = 0. Therefore, Binary code [b3 
b2 b1] = [1 0 0] when encoded in Gray code gives  [g3 
g2 g1] = [1 1 0].   
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The derivation of the generalized Eqs. (1) - (3) can be
computed as below.

From Table 1 above, a set of the following Boolean
functions expressed in the form of min-terms Σ mi where
i varies from 0 to 7, can be derived as:

g3 (b3, b2, b1) = Σ (m4, m5, m6, m7)                        (4)

g2 (b3, b2, b1) =Σ (m2, m3, m4, m5) (5)

g1 (b3, b2, b1) = Σ (m1, m2, m5, m6) (6)

The minimized version of above Boolean functions
using the K-maps and hence the implementations of those
minimized functions are as given in Figs. 1 and 2 respec-

tively.
Similarly, the reversal of Gray code bits [gn gn-1 … g2.

g1] again into -…-8-4-2-1 weighted binary code bits [bn
bn-1 … b2. b1] can be performed by using the equations as
given below:

bn =
g n
(7)

(8)

.

.

(9)

Or,  in  general, to compute the binary code bits bn-1,
… , b2,
and. b1 the

following recursion equation can be used where, i varies
from 1 to n-1. 

(10)

Example 2:

Let a Gray code [g3 g2 g1] = [1 1 0]. 
The derivation of the generalized Eqs. (7) - (10) can be

easily computed as:
From Table 1 above, a set of the following Boolean

functions expressed in the form of min-terms Σ mi where
i varies from 0 to 7, can be derived as:

b3 (g3, g2, g1) = Σ (m4, m5, m6, m7)                      (11)

b2 (g3, g2, g1) = Σ (m2, m3, m4, m5)                      (12)

b1 (g3, g2, g1) = Σ (m1, m2, m4, m7)                      (13)

The above Boolean functions can be minimized using
the K-maps as demonstrated below (see Fig. 3). Whereas,
the implementation of those minimized Boolean functions
is shown in Fig. 4.

Since the Gray code encoder needs first to obtain the

Figure 1.  K-maps and minimized Boolean functions for g3, g2 and g1

G3

G2

G1

B3

B2

B1

MSB

LSB

Figure 2.  A 3-bit Binary to Gray Converter Circuit

b1 = b2 ⊕ g1                                         

bn-i = bn-i+1 ⊕ gn-i                                 

     So, b3 = g3 = 1; b2 = b3 ⊕ g2 = (1 + 1) mod 2 =0 ; b1 = 
b2 ⊕ g1 = (0 + 0) mod 2 = 0. Therefore, Gray code [g 3 
g2 g1] = [1 0 0] when encoded in Binary code [b3 b2 b1] 
gives  = [1 1 0].   

bn-1 = bn ⊕ gn-1                                                     
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binary data (through a binary counter) before generating
the Gray code. This process requires 2-stages as shown in
Fig. 5. Thus, it is imperative to derive a mechanism to
avoid this situation which needs much time and space to
implement. The ensuing section is a consequence to it.

3.  Computing   Gray   Codes  -   Proposed 
Methodology

If we look to the Table 2 and 3 which lists the Gray
codes,  respective min-terms and equivalent decimals for
n = 1 to 6 forced us to derive the following conclusions.
1. Gray code of size n has a specific pattern relationship

between min-terms of the Gray code of its predeces-

sor code of size n-1.
2. The Gray code of size n can be directly scripted using

the n-bit K-map where the min-terms cells are to be
read clock-wise and down to the row as explained in
the Fig. 6.
The example of Fig. 6 is a 4-variable K-map used to

Figure 3.  K-maps and minimized Boolean functions for b3, b2 and b1

B3

B2

B1

G3

G2

G1

MSB

LSB

Figure 4.  A 3-bit Gray to Binary converter circuit

CLK

Binary
Counter

Binary
to

Gray
Converter

Figure 5.  Black model of Binary to Gray code 
conversion

Table 2.  Decimal, Gray code, and (min-terms): For, 
n = 1 to 5
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generate Gray code which reads as [m0 m1 m3 m2 m6 m7 m5

m4 m12 m13 m15 m14 m10 m11 m9 m8]/. The derivation 2 is
not feasible since generating the K-map for higher vari-
ables are difficult to manipulate. Therefore, the derivation
1 is the point of our work.  
4.  Proposed Algorithm 

The following Eqs.  (14) to (18) describe the Gray

codes for bit size 1 to 5 respectively. A specific relation
between the min-terms patterns is visible and summarized
in the form of a theorem below:

G(1) = [m0 | m1]/ (14)
G(2) = [m0 m1 | m3 m2]/ = [G(1); [m3 m2]/]  (15)

G(3) = [m0 m1 m3 m2 | m6 m7 m5 m4]/ 
= [G(2); [m6 m7 m5 m4]/]                           (16)

G(4) = [m0 m1 m3 m2 m6 m7 m5 m4 | 
m12 m13 m15 m14 m10 m11 m9 m8]/ 

= [G(3); [m12 m13 m15 m14 m10 m11 m9 m8]/ (17)

G(5)SETI = [m0 m1 m3 m2 m6 m7 m5 m4 m12

m13 m15   m14 m10 m11   m9 m8]/ = G(4) 
G(5)SET II = [m24 m25 m27 m26 m30 m31 m29 

m28 m20 m21 m23  m22 m18  m19 m17 m16]/

G(5)  =    [G(4); [m24   m25 m27 m26 m30
m31 m29 m28 m20  m21 m23 m22 m18 m19

m17 m16]/]                                          (18)

Theorem 1:

G (n) is a matrix of order 2n x n in binary format of n-
bit forming 2n min-terms of n variables. By analyzing the
patterns we reach to the conclusion that G(n) can be
obtained first by writing the min-terms of G(n-1) then
appending the min-terms by advancing each of the min-
terms starting from the last to the first by a value of 2n-1. 

Proof:

Proof is as visible through the Eqs. from (14) to (18).
An algorithm is designed on the basis of the study of

Theorem 1 and is as given below. 

Algorithm

STEP 0:
START by inputting the bit size (n) of the Gray code

to be generated;

STEP 1:
Initialize a vector V = [0 1]; 

STEP 2:
Count a loop for k = 1 to n;

STEP 3:
Check that k = n or not, if YES GO TO STEP 8;

STEP 4:
Increment the counter k by 1 i.e. k = k +1; 

STEP 5:

Deci
mal 

Gray code (m)  Deci
mal 

Gray code (m) 

0 000000 (m0) 48 110000 (m48) 
1 00001  (m1) 49 110001 (m49) 
3 000011 (m3) 51 110011 (m51) 
2 000010 (m2) 50 110010 (m50) 
6 000110 (m6) 54 110110 (m54) 
7 000101 (m7) 55 110111 (m55) 
5 000101 (m5) 53 110101 (m53) 
4 000100 (m4) 52 110100 (m52) 
12 001100 (m12) 60 111100 (m60) 
13 001101 (m13) 61 111101 (m61) 
15 001111 (m15) 63 111111 (m63) 
14 001110 (m14) 62 111110 (m62) 
10 001010 (m10) 58 111010 (m58) 
11 001011 (m11) 59 111011 (m59) 
9 001001 (m9) 57 111001 (m57) 
8 001000 (m8) 56 111000 (m56) 
24 011000 (m24) 40 101000 (m40) 
25 011001 (m25) 41 101001 (m41) 
27 011011 (m27) 43 101011 (m43) 
26 011010  (m26) 42 101010 (m42) 
30 011110 (m30) 46 101110 (m46) 
31 011111 (m31) 47 101111 (m47) 
29 011101 (m29) 45 101101 (m45) 
28 011100 (m28) 44 101100 (m44) 
20 010100 (m20) 36 100100 (m36) 
21 010101 (m21) 37 100101 (m37) 
23 010111 (m23) 39 100111 (m39) 
22 010110 (m22) 38 100110 (m38) 
18 010010 (m18) 34 100010 (m34) 
19 010011 (m19) 35 100011 (m35) 
17 010001 (m17) 33 100001 (m33) 
16 010000 (m16) 32 100000 (m32) 

Table 3.  Decimal, Gray code, and (min-terms): For,
n = 6

Figure 6.  A 4-variable K-map
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For i = 0 to 2n-1-1; 
Vi = [V(2n-1-i)  + 2n-1];

STEP 6:
Modify vector V as V = [V, Vi];

STEP 7:
GO TO STEP 3;

STEP 8:
Transpose V i.e. V/;

STEP 9:
STEP 10:

Output G(n);

STEP 11:
STOP

A Debug Example:

Example 3:

To elaborate the computing of variables in the above
mentioned steps a debug test of the above algorithm is car-
ried out for n = 3 and is presented below in Table 4. 
5.  Implementation of Algorithm 

The above designed algorithm is implemented using
the MATLAB code. The out put of the m-file with the
name "gray_generator_proposed" can be visualized as
shown in Fig. 7. A sample output of the program shown in
the figure is only for n = 4. This is provided just to make
it more readable, otherwise the output for the higher val-
ues of n will require much space to present. Similarly, we
also encoded the conventional method of Gray code con-
version into MATLAB script. To compare the efficiency
amongst these two approaches we run both of the pro-

grams for n = 2 to 10 and some of the results are present-
ed and made available through Figs. 8 to 9 in the ensuing
section below. 

>>gray_generator_proposed
Please enter a valid positive integer ( > 1)  :  4
Gran output (s)
===================

0            0           0         0
0            0           0         1
0            0           1         1
0            0           1         0
0            1           1         0
0            1           1         1
0            1           0         1   
0            1           0         0
1            1           0         0
1            1           0         1
1            1           1         1
1            1           1         0
1            0           1         0
1            0           1         1
1            0           0         1
1            0           0         1

          Convert V/ into binary format i.e. (V /)10 →  (V/)2 = 
Gray code of n -bit size i.e. a matrix G (n)  of size (N+1) 
by n; 

i Vi V (V/)base 2 

-  [0 1] - 
0 to 1 [3 2] [0 1 3 2]  - 
0 to 3 [6 7 5 4]  [0 1 2 3 6 7 5 4]  - 

 000 
001 
011 
010 
110 
111 
101 
100 

Table 4.  A debug test of algorithm for, n = 3
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0
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Figure 8.  Memory requirements comparison
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Figure 9.  Relative error judgment
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Elapsed time is 0.000000 seconds.

Figure 7.  MATLAB command window output
6.  Results

MATLAB 7.0 on a P 4 CPU 1.5 GHz, 512 MB of RAM
is used as the bench marks for testing the codes for both
of the computing methodologies. The processing time and
memory space required to implement both of the pro-
grams (the conventional and the proposed one) are record-
ed while running the programs. 

The results for a subset of the study, for n = 2 to 10
where the memory requirement comparison of the con-
ventional approach of Gray code converter and the pro-
posed approach is presented in Fig. 8. The memory
requirement is mapped in bytes. Further, to judge the effi-
ciency of the proposed algorithm, a relative error plot is
shown in Fig. 9. With respect to the memory require-
ments, the behavior of the relative error shown in Fig. 9,
demonstrates almost an exponential characteristic except
for n = 2. And, this exception for (n = 2) is because of that
the implementing the Gray code generator using conven-
tional approach requires significant more memory space
than the proposed approach of generating the Gray codes
for n = 2.  The run time requirements comparison is
demonstrated through Fig. 10. 

7.  Conclusions

A time space optimal algorithmic procedure to gener-
ate Gray code-words of any bit length n is presented
through this paper. The comparative study reveals that the
proposed approach is not only faster but also, requires
about 25% less memory space on average while compared
with the conventional method of Gray code-word genera-
tion technique. Since Gray code is widely used for on line
system monitoring hooked with sensors and with on board

systems and hence these two parameters (space and time
requirements) are very critical in these applications.
Therefore this proposed algorithmic procedure is more
advantageous.
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