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Abstract: A pattern recognition technique based on approximate estimation of power spectral densities (PSD)
of sub-bands resulted from wavelet decomposition of R-R interval (RRI) data for identification of patients with
Congestive Heart Failure (CHF) is investigated. Both trial and test data used in this work are drawn from MIT
databases. Two standard patterns of the base-2 logarithmic values of the reciprocal of the probability measure
of the approximated PSD of CHF patients and normal subjects are derived by averaging all corresponding val-
ues of all sub-bands of 12 CHF data and 12 normal subjects in the trial set. The computed pattern of each data

under test is then compared band-by-band with both standard patterns of CHF and normal subjects to find the
closest pattern. The new technique resulted in an identification accuracy of about 90% by applying it on the test

data.
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1. Introduction

Heart failure is a common condition that usually devel-
ops slowly as the heart muscle weakens and needs to work
harder to keep blood flowing through the body. Heart fail-
ure develops following injury to the heart such as the dam-
age caused by heart attack, long-term high blood pressure,
or an abnormality of one of the heart valves. Heart failure
is often not recognized until a more advanced stage of
heart failure, commonly referred to as congestive heart
failure (CHF), in which fluid may leak into the lungs, feet,
and in some cases the liver or abdominal cavity.
Physicians often assess the stage of heart failure according
to the New York Heart Association (NYHA) functional
classification system. This system relates symptoms to
everyday activities and the patient's quality of life.
According to this system, heart failure is classified into 4
classes (Heart Failure Society of America,
http://www.abouthf.org/questions_what_is_hf.htm):
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recognition, Wavelet decomposition, Soft-decision, Power

1. Class I (Mild), symptoms with more than ordinary
activity.

Class I (Mild), symptoms with ordinary activity.
Class 11l (Moderate), symptoms with minimal activity.
4. Class IV (Severe), symptoms at rest.

w N

Physicians often order a number of tests when explor-
ing a possible diagnosis of heart failure. The most impor-
tant of these tests is an echocardiogram. Echo cardiog-
raphy is a noninvasive, entirely safe test that uses ultra-
sound to image the heart as it is beating (Congestive Heart
Failure,  University of Maryland  Medicine,
http:/www.umm.edu/patiented/doc13diagnos.htm).

Cardiac ultrasounds provide information about:

* Accurate indications of valve function.
* The amount of blood flow through the heart's chambers.
* The location of the failure, whether has occurred on the
left side, the right side, or both.
Physicians use information from the echocardiography
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for calculating the ejection fraction (EF), which is the per-
cent of the blood pumped out during each heartbeat. EF is
important for determining the severity of heart failure.
People with a healthy heart usually have an EF of 50 per-
cent or greater. Most people with heart failure, but not all,
have an EF of 40 percent or less. The echocardiogram is
the most accurate diagnostic test but an expensive one. So
there is a need to a noninvasive simple test that helps in
identification of patients who need an echocardiogram
test.

2. Heart Rate Variability

Heart rate variability (HRV) is referred to as the
beat-to-beat variation in heart rate. Instantaneous heart
rate is measured as the time in seconds between peaks of
two consecutive R waves of the ECG signal. This time is
referred to as the RRI. The beat-to-beat fluctuations in the
rhythm of the heart provide us with an indirect measure of
the heart health, as defined by the degree of balance in
sympathetic and vagus nerve activity (Robert Nolan and
Heart Rate Variability http://www.bio-
medical.com/news_display.cfmnewsid=27). HRV analy-
sis serves as a marker for cardiovascular disease because
cardiac dysfunction is often manifested by systematic
changes in the variability of the R-R interval sequence rel-
ative to that of normal controls. The variation of heart rate
accompanies the variation of several physiological activi-
ties such as breathing, thermoregulation and blood pres-
sure changes (Task Force of the European Society of
Cardiology and the North American Society of pacing and
Electrophysiology).

Several HRV abnormalities have been described in
patients with CHF. It has been shown that patients with
heart failure have decreased HRV, particularly those who
are at risk of cardiac death (Ponikowski et al. 1997).
Analysis of the HRV using many signal processing tech-
niques can help to detect abnormalities, by manipulating
RRI data either in the time-domain or in the frequency
domain (Teich et al. 2001).

The frequency spectrum of the RRI data is divided into
three main bands:

3. RRI Data Groups

. The very low-frequency band (VLF): fe
(0.0033 — 0.04) Hz.

. The low-frequency band (LF):
Hz.

. The high-frequency band (HF): fe (0.15-0.4)
Hz.

fe (0.04-0.15)

Two different groups of data are used as described
below:

3.1 Trial Data
The CHF records and Normal Sinus Rhythm (NSR)
records are drawn from Massachusetts Institute of

Technology (MIT) database, which includes 12 records
from normal subjects (age 29-64 years) (Physionet, The
MIT-BIH  Normal Sinus Rhythm  Database,
http://www.physionet.org/physiobank/database/nsrdb)
and 12 records from patients (age 22-71 years) with CHF
(NYHA class 3 and 4) (Physionet, The BIDMC
Congestive Heart Failure Database, http://www.phys-
ionet.org/physiobank/database/chfdb).

3.2 Test Data

This group contains 53 NSR (Physionet, Normal Sinus
Rhythm RR Interval Database,
http://www.physionet.org/physiobank/database/nsr2db)
and 17 CHF (Physionet, Congestive Hert Filyre RR
Interval Database, heep://www.physionet.org/phys-
iobank/database/ch2db) recordings that are used to test
the performance of the classification algorithm. The CHF
subjects are selected from a larger set that contains 29
long-term recordings. The selected 17 records have CHF
with NYHA class 3 and 4, and the remaining 12 records
have NYHA class 1 and 2, and therefore have been
excluded from the study. The subjects for the selected
records are 8 men, aged 39 to 68, and 2 women aged 38
and 59; gender is unknown for the 7 remaining records,
but aged between 35 and 64 years. The NSR data of this
group contains 53 long-term (about 24 hours) RRI
records. The subjects are 30 men; aged 28.5 to 76, and 24
women aged 58 to 73.

The RRI data, for both trial and test groups, are gener-
ated from the annotation file, which is associated with
each record, using WFDB software (Physionet, an NIH-
NCRR Research Resource,
http://www.physionet.org/physiotools/wfdb.shtml). In the
beginning, all records are truncated to a length of 75821
RR intervals, since the shortest record has such a length.
Such truncation was also performed by other researchers
(Teich et al. 2001).

It was found in (Teich et al. 2001) that with the help of
the wavelet transform standard deviation the normal sub-
jects exhibited greater fluctuations at scale window
between 16 and 32 samples than those afflicted with heart
failure. It was possible to completely discriminate
between 12 CHF and 12 NSR subjects that represent the
trial data in this study.

4. Soft-Decision Technique

A method was implemented for screening obstructive
sleep apnea and normal controls using the estimated PSD
by a soft-decision algorithm on decomposed sub-bands
(Hossen, et al. 2003 and Hossen et al. 2005). The same
method was also used to screen patients with CHF using
power spectral ratios LF/HF and VLF/HF as screening
parameters on MIT trial data only (Hossen and Al-
Ghunaimi, 2004). Wavelet decompositions were used
instead of subband decomposition to estimate the PSD of
a signal (Hossen 2004). In this work a pattern recognition
technique based on PSD estimation of wavelet decom-
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Figure 1. Asingle stage wevelet-decomposition

posed sub-bands of RRI data is implemented for the pur-
pose of identification of patients having CHF from normal
controls. A complete analysis is included on both MIT
trial and test data sets. The work is examined by measur-
ing the classification performances and including a con-
sistency test.

4.1 Wavelet-Decomposition and Band-Selection
The block-diagram of the wavelet decomposition is
shown in Fig. 1.

The input signal x(n) of length-N is first filtered by low-
pass (LPF) and high-pass (HPF) filters and then down-
sampled by a factor of 2 to produce both the "approxima-
tion" a(n) and the "details" d(n). Assuming haar-filters are
used, a(n) and d(n) can be obtained by:

a(n)=%[x( 2n)+x(2n +1)]
1

V2

If there is no information about the energy distribution
of the input sequence, a band-selection algorithm (Hossen
and Heute, 1993) can be used to decide (as a hard deci-
sion) which band is to be computed or kept for more pro-
cessing. This method depends on the energy comparison
between the low- and high-frequency subsequences after
the down sampling in Fig. 1.

M

d(n)= [x(2n) —x(2n +1)]

Ny
2
B= Y (a(n)?~(d(n))? @
n=0
According to the sign of B, the decision is taken: If B
is positive, the low-frequency band is considered, and if B
is negative, the high-frequency band is considered. Since
we are not interested in the value of B, but only in its sign,
a more-simpler equation than Eq. 2 can be obtained
approximately as (Hossen and Heute, 1993):

Ny

2
sgn(B)=sgn a(n)|—|d(n
g()gnzol()ll()l (3)
4.2 Estimation of Power Spectral Density
The decomposition stages in Fig. 1 are computed with
all branches up to a certain stage m to obtain 2m subbands.
All estimator results up to stage m are stored, and a prob-
ability measure is assigned to each path (frequency band)
to bear the primary information.
If J(L) is the assigned probability of the input signal

being primarily low-pass, the number J(H) = 1- J(L) is the
probability that the signal is primarily high-pass. One
simple way to make the probability assignments is to use
the ratio of the number of positive comparisons
between | a(n) | and | d(n) | in Eqg. (3) to the total number
of comparisons for a given stage.

At the following stage, the resulting estimate can be
interpreted as the conditional probability of the new input
sequence containing primarily low (high) frequency com-
ponents, given that the previous branch was predominant-
ly low (high)-pass. Using this reasoning and laws of prob-
ability, the assignments for the probability measure of the
resulting sub-bands should be made equal to the product
of the previous branch probability and the conditional
probability estimated at a given stage. Fig. 2 shows this
step of probability assignment for 8 sub-bands.

The probabilities P(B;) derived from the estimator out-
puts, where i is the index of the band, may be interpreted
themselves as a coarse measurement of the PSD: The
higher the probability value of any band, the higher is its
power-spectral content. For m decomposition stages, 2m
bands are resulted. Each band covers (0.5/2m) Hz of the
RRI spectrum (0-0.5) Hz.

m=1 =2 m=3

Ja(L) J2{L) JaiL)

Ja(L) Jz(L)
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JH LM [

Figure 2. Probability assignments of 8 sub-bands
5. Pattern Recognition Technique

The proposed pattern recognition technique is imple-
mented using the following steps:
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Figure 3. Standard patterns of CHF and normal with 32 Sub-bands

1. The probability measures are computed for each data of
the trial set up to stage m to obtain 2™ probabilities
P(B;), where i is the index of the band. The wavelet
filters used are of the type Daubechies (db4). The
selection of the wavelet filter is a matter of compro-
mise between the complexity and good filter perform-
ances.

2. The logarithmic based-2 values of the reciprocal of the
probabilities can be obtained as:

N 1
1(Bj)=logx( P(Bi)) ()

A staircase approximation of the values of 1(B;) can be
plotted for all bands.

3. An average plot is found by averaging all I1(B;) values
of corresponding bands for all 12 CHF data and nor-
mal data in the trial set to obtain two standard plots for
CHF and normal as in Fig. 3 for 32 sub-bands. A clear
increase in the values of 1(B;) (clear reduction in the
probabilities P(B;) ) in the LF region can be noticed in
CHF plot compared to that of normal plot.

4. The I(B;) values for each data under test are found for
32 sub-bands. A classification factor CF is then deter-
mined as:

CF = _zi(l (Bi)-1H (Bi ))2 —_2§85(| @i)-1n Bi ))2 (5)

Where I (B;) and Iy (B;) are the standard patterns for
CHF and normal respectively.

The RRI spectrum in the frequency region (0.0625 Hz

- 0.4375 Hz) corresponding to bands 5 to 28 is considered

for determining the patterns. The LF and HF regions are
used in the recognition, while the VLF and the upper high
frequency regions are excluded. Depending on the sign of
CF, the algorithm can decide whether the data is CHF or
normal. The data with a negative CF is considered as nor-
mal and the data with a positive CF is a CHF data.

6. Performance Evaluation
The performance of a classifier is evaluated by three

main metrics: sensitivity, specificity, and accuracy as
defined below (Rangayyan, 2001):

Sensitivity (%) = TP*100/(TP+FN) (6)
Specificity (%) = TN *100/(TN +FP) @)
Accuracy (%) = (TN +TP)*100/T @)

where, TP, TN, FN, FP are defined as in Table 1, and T is
the total number of data under test.

Table 1. The confusion matrix

Predicied Class*

Aoctual Clags® FPosgitive (T Hegative (1)
Positive (1) TP FH
Megative (1) FF TH

Sensitivity represents the ability of a classifier to detect
the positive cases, eg. CHF. Specificity indicates the abil-
ity of a classifier to detect negative cases, eg. normal sub-
jects. Accuracy represents the overall performance of a
classifier. It indicates the percentage of correctly classi-
fied positives and negative cases from the total cases
(Rangayyan, 2001).
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Figure 5. Classification factor results of test data with 32 Sub-bands

7. Results and Discussions

Figures 4 and 5 show the values of CF for all CHF
and normal data using 32 Sub-bands for trial and test data
respectively. The algorithm classifies CHF and normal
trial data with an accuracy of 100% (Fig. 4) and classifies
the test data with sensitivity of (13/17) and with a speci-
ficity of (50/53), with an overall identification accuracy of
(63/70) 90% (Fig. 5).

8. Consistency of Results

The leave-one-out method (Marques 2002) is used to

test the consistency of our results. In this method, which
is also called partition method, the available set of data
(94 records, 24 trial records (12 CHF, 12 normal) and 70
test records (17 CHF, 53 normal)) is divided into k=n sub-
sets which rotate in their use of design (trial) and test. The
classifier is designed with n-1 subsets and tested on the
remaining subset as follows:

1. Divide the available data into k=n=5 subsets (Groups:
G1, G2, G3, G4, G5) of randomly patterns. Each sub-
set contains 19 records (6 CHF and 13 normal). G3
contains one CHF data less than other groups.

2. Design the classifier using the first n-1=4 subsets and
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test it on the remaining subset. Estimate the perform-
ance of the classifier.

3. Repeat the previous step rotating the position of the
test subset, obtaining there by k=5 estimates.

Tables 2 shows the results of applying this method on
32 sub-bands. This proves that the results obtained on test
data are very consistent.

Table 2. Results of leave-one-out-method using 32

sub-bands

Test T e

Group Sensitivity ~ Specificity ~ Accuracy
G1 5/6 10/13 15/19
G2 4/6 11/13 15/19
G3 5/5 11/13 16/18
G4 5/6 13/13 18/19
G5 4/6 11/13 15/19

This method was also tested with 16-subband wavelet
decomposition. The accuracy result was almost the same
with the 32 subband decomposition. For further investiga-
tion of the screening capability, three different distance
metrics were used:

* NMSD: Negative Mean Square Distance, which meas-
ures the mean square distance of the negative outputs
(normal) from the threshold (zero) and is defined as:

i=53
NMSD = 3 CF2/53 ©)
i=1
* PMSD: Positive Mean Square Distance, which measures
the mean square distance of the positive outputs (CHF)
from the threshold (zero) and is defined as:

=17,
PMSD= Y CF*4/17 (10)
i=1
* TMSD: Total Mean Square Distance, which measures
the mean square distance of all outputs (normal and
CHF) from the threshold (zero) and is defined as:

™SD = 3 CF2/ 70 (11)
i=1

Where, CF is the classification factor for 53 (normal)

and 17 (CHF) test data. Those distance metrics are listed

in Table 3. From this table, it can be concluded that

increasing the sub-bands from 16 to 32, improves the

results (the distances of classified points from threshold).

Table 3. Distance metrics

Sub-bands NMSD PMSD  TMSD
16 14.49 15.17 12.38
32 108.85 121.91 58.65

The pattern recognition method results in identical
accuracy values when it is used with 16 or 32 sub-bands,
while the consistency of the method is improved as the
number of sub-bands increases from 16 to 32. On the

other hand the omplexity of the algorithm is increased as
the number of sub-bands increases from 16 to 32 sub-
bands. It has been found that the execution time of the
complete program of obtaining the pattern of the signal
under test and compare it with both standard patterns and
finding the result of identification of the subject, is almost
doubled when the number of sub-bands increases from 16
to 32, while the time needed only for comparison with
both standard patterns and finding the results of identifi-
cation is almost the same as the number of sub-bands
increases from 16 to 32.

9. Comparison with Other Techniques

An Accuracy of 100% is achieved in (Teich et al. 2001)
on the same trial data at window scales of 16-samples and
32-samples using some individual wavelets parameters.
The test data in our study was also investigated in a time-
domain technique in (Asyali, 2003), which resulted in an
accuracy of 93.2%. Both techniques in (Teich et al. 2001)
and (Asyali, 2003) can not be considered as screening
techniques because neither of them was implemented on
both trial and test data. So their results can be considered
as data-dependent. The same drawback is applied on our
work in (Hossen and Al-Ghunaimi 2004), since the 100%
efficiency was obtained only on trial data.

On the opposite, our proposed technique in this paper
is implemented on both trial data and test data with an
accuracy of 100% and 90% respectively and with a total
accuracy of 92.55%. Two average standard plots are
obtained from trial data and then have been used to iden-
tify the test data.

10. Conclusions

A soft decision algorithm of PSD estimation of decom-
posed wavelet sub-bands is implemented to obtain two
standard plots of CHF and normal subjects for the purpose
of classification between them in a new pattern recogni-
tion method. The base-2 logarithmic values of the recipro-
cal of the estimated PSD (with db4 wavelets) have been
used to compute the classification factor. The power spec-
tral density of the HRV of CHF patients is noticed to be
reduced compared to that of normal subject especially at
LF region.

The frequency range (0.0625 to 0.4375) Hz of the PSD
spectrum of the RRI data is used in the recognition. An
accuracy of 100% is obtained on 24 MIT trail data and
90% on 70 MIT test data.
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