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ABSTRACT:  The relationship between water demand and electrical power consumption is critical as water 
transmission systems necessitate considerable amounts of energy. Accurate load forecasting for water pumping 
stations can improve the proper administration of energy, reduce inefficiency, and improve profitability. The 
application of contemporary deep learning techniques can significantly optimize energy consumption, save 
expenditures, and promote sustainable development in the context of water pumping stations. Moreover, precise load 
forecasting is essential for the proper functioning and energy management of water pumping stations, especially in 
areas with intricate topographical circumstances. Hence, this research utilizes Gated Recurrent Units (GRUs) to 
forecast the load demands of water pumping stations in Jebel Akhdar. The suggested model is specifically intended 
to capture the temporal dependencies and non-linear patterns that are inherent in the load demand data of the water 
pumping stations. In this regard, GRUs excel in their ability to dynamically update the hidden state, allowing them 
to capture complex temporal patterns accurately. Therefore, this study offers specific insights and solutions that may 
be used to comparable places characterized by intricate time-series variables. The approach provides superior 
prediction accuracy compared to standard forecasting methods by using historical load data.  The findings of this 
work illustrate valuable insights for utility regulators to optimize energy usage and ensure sustainable water delivery. 
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ي الجبل الأخض   (GRU) وحدة الذاكرة التكرارية ذات البوابة
ي محطات ضخ المياه ف 

 لتنبؤ الأحمال ف 
ي   رزاق الاحسان*، محمد شدمان عابد، محمد العبر

ة من  الملخص:   الطاقة. يمكن للتنبؤ تعتبر العلاقة بير  الطلب على المياه واستهلاك الطاقة الكهربائية أمر بالغ الأهمية لأن أنظمة نقل المياه تتطلب كميات كببر
ي محطات ضخ المياه، و 

تكلفة  . كما أن تطبيقه يوفر تكلفة رأس المال و قلل الفاقد، ويعزز الكفاءة الاقتصادية يالعميق الحديث أن يحسن الإدارة السليمة للطاقة ف 
وريًا للتشغيل السليم وإدارة الطاقة لمحطات ضخ المياه  اللتشغيل، ويعزز التنمية المستدامة لمحطات  ا ضخ. علاوة على ذلك، يعد التنبؤ الدقيق بالأحمال أمرًا ض 

ي المناطق ذات الظروف الطبوغرافية المعقدة.  
للتنبؤ باحتياجات الأحمال لمحطات ضخ    (GRUs)ركزت هذه الدراسة على استخدام وحدات التكرار المغلق  خاصة ف 

، حيث تم تصميم النموذج المقب   ي منطقة الجبل الأخض 
مبر  بيانات الطلب على الأحمال.  المياه ف 

ُ
ي ت
ح خصيصًا لاستيعاب الأنماط الزمنية المعقدة وغبر الخطية الت 
نها من التنبؤ بدقة عالية بالأحمال الزمن

ّ
ة على تحديث الحالة الداخلية ديناميكيًا، مما يُمك ظهر وحدات التكرار المغلق قدرة متمبر 

ُ
ز نتائج هذه الدراسة فعالية   .يةت بر

ُ
ت
ي تحقيق دقة تنبؤ أعلى مقارنة بالأساليب التقليدية من خلال تحليل البيانات التاريخية للأحمال. وتوفر هذه النتائج رؤى قيم

ي  النموذج ف 
ة تساعد الجهات المعنية ف 

ي المناطق ذات ا
 .لظروف الجغرافية المعقدةتحسير  كفاءة استهلاك الطاقة وضمان توفبر مياه مستدام، خاصة ف 
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1. INTRODUCTION 

The need for clean energy and water is experiencing a 
substantial increase as a result of the rapid development 
of the global population, industrialization, and evolving 
patterns of power and water use (Xu & Yang, 2024). From 
2011 to 2030, the worldwide energy demand is projected 
to grow at an annual rate of 1.6%, resulting in a 36% rise 
in global energy consumption (Abid, Ahshan, Abri, Al-
Badi, & Albadi, 2024). The present global water 
consumption is 4.6 trillion cubic meters per year. It is 
projected to rise by 20-30% by 2050, reaching 5.5-6.0 
trillion cubic meters per year. Water supply systems, 
including pumping, treatment, and distribution, need 
significant energy (Wang, Xie, Liu, Yu, & Wang, 2024). 
On a global scale, the water industry contributes 
significantly to the total energy consumption. For 
example, in certain geographic regions, the usage of 
energy connected to water accounts for as much as 8% of 
the overall energy consumption (Tang, et al., 2024). The 
use of electricity in water networks is a crucial element of 
their functioning, including numerous operations such as 
water extraction, purification, and distribution. Pumps, 
the primary energy consumers in these systems, transport 
water from sources such as rivers, lakes, or underground 
aquifers to treatment facilities, and then to end-users. 
Furthermore, the process of operating the water 
distribution networks in order to transport water to 
residential, commercial, and industrial consumers 
necessitates substantial energy consumption. Thus, 
effective energy management and accurate load 
forecasting in these networks are essential for minimizing 
operating expenses, improving sustainability, and 
guaranteeing dependable water supply services. 

Oman’s water supply system mainly depends on 
desalination, which is a significant user of electrical 
power. Oman has made substantial investments in 
desalination technology in order to fulfil its increasing 
water requirements (Rupiper, Good, Miller, & Loge, 
2024). Desalination facilities are among the most 
significant power users in the nation. Water pumping 
stations, particularly in geographically difficult areas such 
as Jebel Akhdar, need a substantial amount of electrical 
energy to guarantee sufficient water supply (Al-Busaidi, 
Janke, Menezes-Blackburn, & Khan, 2022). In the 
Sultanate, the average cost of producing water is 0.455 
OMR per cubic meter, while the cost of distributing water 
in Jabel Akhdar is 0.972 OMR per cubic meter (Oman 
Water and Wastewater Services Company, 2024). The 
cost of distributing water in Jabel Akhdar is more than 
double the cost of production. The significant costs are 
primarily a result of the use of energy-intensive pumping 
stations that provide the necessary flow rate and pressure 
in the water distribution network (Grobe, Urai, Littke, & 
Lünsdorf, 2016). For instance, the water present in Birkat 
Al Mouz necessitates the use of five pumping stations to 
elevate the water for customers located at the summit of 

Jabel Akhdar. It is important to note that the distance 
from Birkat Al Mouz to the summit of the mountain is 
about 34 kilometres, requiring the use of five pumping 
stations. Therefore, the correlation between water 
demand and electrical power use is crucial in Jabel 
Akhdar. Oman's energy strategy prioritizes enhancing 
water and energy use and the government is now 
investigating alternative energy sources to fuel water 
infrastructure, intending to decrease the amount of 
carbon emissions and improve long-term viability (Tse, 
2024). Therefore, utilizing modern approaches, efficient 
load forecasting and control of the water pumping 
stations of Jabel Akhdar may substantially impact 
optimizing energy consumption, minimizing expenses, 
and fostering sustainable growth (Kow, et al., 2024). 
Precise load prediction for water pumping stations in 
Jebel Akhdar can also enhance the use of electrical power, 
minimizing inefficiency and enhancing effectiveness. 
Moreover, accurate load forecasting in Jabel Akhdar may 
facilitate the incorporation of renewable energy sources, 
such as solar or wind, into the energy combination by 
maximizing their use and decreasing dependence on 
costlier, non-renewable energy sources. 

In water networks, energy losses can occur due to 
various factors, such as pump inefficiencies, leaks, and 
distribution losses. These losses highlight the need for an 
effective energy management strategy, where accurate 
load forecasting plays a critical role in optimizing 
operational efficiency and reducing overall energy 
consumption. Previous studies used several 
computational techniques to handle water pumping 
stations and associated difficulties effectively. 
Researchers in (Shao, Zhou, Yu, Zhang, & Chu, 2024) 
suggest an innovative approach to linearize the nonlinear 
problem by providing an optimization-based technique to 
dynamically modify the number of breakpoints used in 
the piecewise linearization process. The technique 
achieved competitive computational efficiency and 
energy cost savings by minimizing the number of 
auxiliary variables. The study in (Brentan, Mota, 
Menapace, Zanfei, & Meirelles, 2024) thoroughly 
examines the most effective functioning of pumps, taking 
into account both energy efficiency and water quality as 
the main goals. The model is gradually modified by 
adding a series of limitations to assess how they affect the 
ultimate operating plan. At first, the Particle Swarm 
Optimization (PSO) technique is used for single-objective 
optimization, which is a reliable and often used method in 
water resources research. The research conducted in 
(Shahhosseini, Najarchi, Najafizadeh, & Hezaveh, 2023) 
specifically examined the intricate configuration of the 
water distribution network (WDN) in the north-west 
region of Tehran. This network consists of 1124 pipes 
with a total length of 92552 meters, as well as four gravity 
reservoirs and 988 nodes. The optimization approaches of 
Genetic Algorithm (GA) and Nonlinear Programming 
(NLP) were used to improve the Water Distribution 
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Network (WDN) by reducing leakage and enhancing its 
resilience. Moreover, different computational techniques, 
such as heuristic algorithms, statistical models, and 
traditional machine learning methods, have been applied 
to manage water pumping stations. However, the 
comparison shows that optimization-based models and 
hybrid approaches often outperform others in terms of 
efficiency and accuracy, highlighting the importance of 
choosing the right method for effective water 
management (Al-Busaidi, Janke, Menezes-Blackburn, & 
Khan, 2022) (Shahhosseini, Najarchi, Najafizadeh, & 
Hezaveh, 2023). Moreover, various machine learning 
algorithms  were used in recent research for electricity 
load forecasting applications. Authors in (Giberti, Dereli, 
Bahramian, Flynn, & Casey, 2024) conducted load 
forecasting using a high-frequency reference dataset 
derived from the Urban Water System model. More 
specifically, the researchers examined the performance of 
autoregressive models with time-delay networks, 
nonlinear autoregressive networks, and long short-term 
memory networks. A new spatiotemporal graph 
attention-enabled Transformer was introduced in (Zhao, 
et al., 2024) for the purpose of multivariate residential 
load forecasting. Unlike standard Transformer-based 
models, this model takes into account spatial correlations 
across numerous homes. (Zhang, Zhou, Xu, & Li, 2024) 
introduced a multivariate Transformer-based model 
designed specifically for direct net load forecasting. This 
design aims to enhance the extraction of multi-scale 
characteristics and capture the relationships between the 
net load and the relevant parameters. The authors in 
(Dong, Tian, & Lv, 2024) suggested an updated 
optimization method called IGWO-JAYA, which 
improves upon the Grey Wolf Optimizer (GWO) 
algorithm by including the use of the Halton low-
discrepancy sequence and the mechanism of the JAYA 
algorithm. The suggested optimizer was used in data 
elimination to improve the Variational Mode 
Decomposition (VMD), which allows for adaptive noise 
reduction based on data analysis. In the study conducted 
in (Song, et al., 2024), the challenge of predicting multi-
energy loads is converted into a hierarchical multi-task 
learning problem. This is accomplished through the use 
of a stochastic focus mechanism and a controlled 
longitudinal convolutional model. In order to enhance the 
effectiveness of short-term power load forecasting, a load 
forecasting approach is designed in (Wang, Chen, Xiao, 
Yang, & Yao, 2024) that incorporates user behaviour 
through an empirical mode decomposition algorithm. 
Lately, deep learning models, specifically models 
constructed using GRU, have been extensively used in 
present research for time-series forecasting. For example, 
researchers in (Chiu, Hsu, Chen, & Wen, 2023) have 
shown that Convolutional Neural Networks (CNNs) are 
capable of extracting valuable information from power 
load data with high levels of uncertainty. Additionally, 

they have found that GRUs provide advantages in time-
series forecasting. In (Li, et al., 2022), researchers provide 
a new framework that combines the Bidirectional GRU 
and Sparrow Search Algorithm to enhance the precision 
of oil rate forecasts. In (Xu, et al., 2024), the authors offer 
a novel approach that combines GPU and XGBoost 
models to enhance the accuracy of prospective renewable 
energy hourly predictions. The suggested methodology 
encompasses numerous phases, including data 
preparation, constructing features, development of GRU 
and XGBoost mathematical models, and the 
amalgamation of the forecast outputs. In (Liu, Shi, Sun, 
Lin, & Li, 2024), a net load hybrid forecasting model 
named CNN-GRU is introduced. The results of the 
forecasting demonstrate that the suggested model is 
capable of successfully handling weather fluctuations 
while retaining a high level of predictive accuracy. 
 

1.1 Problem Statement 
 
Water pumping stations are essential infrastructure for 
guaranteeing a dependable water supply, particularly in 
areas with difficult geographical and climatic 
circumstances such as Jebel Akhdar. Nevertheless, the 
effective functioning of these stations for efficient energy 
management relies significantly on precise load 
forecasting. Conventional load forecasting techniques 
often struggle to accurately account for the intricate time-
based relationships and non-linear trends in load data, 
resulting in less than optimum energy management and 
higher operating expenses. Insufficiently accurate load 
estimates may lead to either excessive strain on resources 
or inadequate use, which can have a negative impact on 
the sustainability and dependability of water distribution. 
Hence, there is an urgent need for sophisticated 
forecasting methods that can provide more precise and 
dependable load estimates to improve the operational 
efficiency and energy management of water pumping 
stations in Jebel Akhdar. Current load forecasting 
techniques for water pumping stations mostly depend on 
linear models or basic approaches that do not adequately 
account for the intricate temporal relationships and non-
linear patterns in the data. Furthermore, despite the 
progress made in deep learning, there is limited 
application of advanced models such as Gated Recurrent 
Units (GRUs) for load forecasting, specifically in the 
context of water pumping stations. Furthermore, more 
research needs to be done that explicitly addresses load 
forecasting for water pumping stations in geographically 
distinct areas like Jebel Akhdar, where local 
characteristics may have a substantial impact on load 
patterns. 
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1.2 Research Objectives 
 
This work presents the use of Gated Recurrent Units 
(GRUs) for load forecasting in water pumping stations, 
showcasing their capacity to effectively manage intricate 
temporal relationships and non-linear patterns in load 
data. The proposed model was compared to the 
conventional Multi-layer Perceptron (MLP) based model.  
The use of advanced models such as Gated Recurrent 
Units (GRU), specifically in the context of water pumping 
stations, significantly improves prediction accuracy in 
comparison to MLP, as shown by comprehensive 
performance measures.  This study focuses on the distinct 
difficulties of load forecasting in Jebel Akhdar, offering 
customized insights and solutions that may be used to 
compare places characterized by intricate topographical 
and meteorological circumstances. The model utilizes a 
wide range of data inputs, such as historical load data and 
operating schedules, to enhance the strength and 
dependability of load projections. This study enhances 
energy management and operational efficiency of water 
pumping stations by providing more precise load 
projections, hence supporting sustainable water 
distribution practices. 
 
 
 

 

2. METHODOLOGY 

The gated recurrent unit (GRU) was initially developed to 
enable each recurrent unit to capture dependencies of 
varying time scales dynamically. Like the Long Short-
Term Memory (LSTM) unit, the GRU also includes gate 
modules that control units with a reduced number of 
gates and parameters. This simplicity often results in 
accelerated training periods and simplified 
implementation. The update gate, denoted as z, 
determines the extent to which the unit modifies its 
activation. Firstly, the update gate is calculated by: 

 

 

 
 

 

 
𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ 𝑥𝑡 + 𝑈𝑧 ⋅ ℎ(𝑡−1) + 𝑏𝑧)                    (1) 

where t represents the iteration, x is the input, U and W 
are weight matrices, b represents bias vectors, and h 
represents the hidden state. The process of calculating the 
linear combination of the current state and the newly 

Figure. 1. Load data in time-series representation 

Figure. 2. Load data in time-series representation (Monthly 
distribution) 

Figure 3. Load data in time-series representation (Hourly 
distribution) (Oman Water and Wastewater 
Services Company, 2024) 

Figure 4. Load data of sample meter 1 (Oman Water and 
Wastewater Services Company, 2024) 
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calculated state is analogous to the LSTM unit. GRUs, 
with a reduced number of parameters, have a lower 
susceptibility to overfitting in comparison to more 
intricate models such as LSTMs. This advantage is 
especially evident when working with smaller datasets. 
The GRU lacks a mechanism to regulate the level of state 
exposure, resulting in the complete exposure of its whole 
state on each occasion. Hence, the candidate activation 
function is calculated in a manner that is comparable to 
the standard recurrent unit, such as: 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ 𝑥𝑡 + 𝑟𝑡 ∘ (𝑈ℎ ⋅ ℎ(𝑡−1)) + 𝑏ℎ)             (2) 

 

 

 

 

where r represents a collection of reset gates with the 
operation of element-wise multiplication. When the reset 
gate is turned off (near 0), the unit behaves as if it is 

receiving the first symbol of an input sequence. This 
allows it to disregard the previously calculated state. 

 
Table 1. Results Analysis.  

Algorithm MLP GRU 

 
Test MSE 

 
0.0090 0.0077 

Training 
MSE 

 
0.0078 0.0076 

 
Batch size 

 
16 16 

 
Epoch 

 
100 100 

Optimizer 
 
Adam Adam 

Dropout - 0.2 
 

 

 

 

 

Hence, the computation of the final hidden state (h) is 
performed using the following method:  

ℎ𝑡 = 𝑧𝑡 ∘ ℎ(𝑡−1) + (1 − 𝑧𝑡) ∘ ℎ̃𝑡            (3) 

Moreover, the computation of the reset gate r, is 
analogous to that of the update gate: 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ 𝑥𝑡 + 𝑈𝑟 ⋅ ℎ(𝑡−1) + 𝑏𝑟)                 
(4) 

Figure 5. Load data of sample meter 2 (Oman Water and 
Wastewater Services Company, 2024) 

Figure 6. Implementation of GRU-based load forecasting 

Figure 7. Train VS validation using GRU. 

Figure 8. Train VS validation using MLP 
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Therefore, the update order of the reset gate enables 
the decreased quantity of hyperparameters in GRUs  

the hyperparameter tuning procedure, facilitating the 
optimization of the model for particular tasks. GRUs often 
use less computer resources and memory than LSTMs 
due to their more straightforward structure and fewer 
parameters. This characteristic makes them well-suited 
for use in situations where there are constraints on the 
available processing resources. The simplified structure 
of GRUs may result in accelerated training and inference 
durations, facilitating expedited development cycles and 
real-time implementations. Although GRUs have a less 
complex structure, they have been shown to achieve 
similar or superior performance compared to LSTMs in a 
range of sequential and time-series prediction tasks. 

 

 
 

 

 

3. DATA ANALYSIS AND SIMULATION 

This study utilizes the historical load data obtained from 
the Jebel Akhdar water pumping stations over a period of  
one year (Oman Water and Wastewater Services 
Company, 2024). Fig. 1 illustrates the whole dataset used 
for both training and testing purposes in this study. It is 
important to note that, all the loads are in kW units. Fig. 
2 depicts the monthly distribution of the load data. 
August to November are the months with the greatest 
demand for power, with September being the peak 

month. Fig. 3 illustrates the hourly distribution of the load 
data. It is evident that the load values are greater 
throughout the mid-hours of the day, particularly 
between the 10th and 14th hour, with the peak generally 
occurring around the 13th hour.  Furthermore, Fig. 4 and 
Fig. 5 illustrate the yearly (8760 hours) sample meter load 
data from the pumping stations. It has been observed that 
load data tends to peak during the middle months of the 
year, especially from July to September. It is important to 
note that, during the simulation, all the meter data were 
added with respect to the respective hours of the yearly 
data.  Moreover, in terms of the simulation, the GRU 
neural network is structured using an architecture that 
has input, hidden, and output layers. GRUs are selected 
for their capacity to grasp temporal relationships in 
sequential data using a more streamlined design and 
achieving quicker convergence in comparison to LSTMs. 
The most relevant characteristics are mainly chosen from 
the processed data for training purposes. This entails 
determining the most influential factors that impact the 
load.  
 

 

 
 

 

 
Patterns, including time of day, day of the week, and 
previous load levels. The training procedure passes the 
input data through the GRU layers, improving the 
network weights by backpropagation, and reducing the 
difference between anticipated and actual load levels. The 
verified model undergoes a process of fine-tuning 

Figure 9. Prediction using GRU. 

Figure 10. Prediction using GRU (zoomed version). 

Figure 11. Prediction using MLP. 

Figure 12. Prediction using MLP (zoomed version). 
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hyperparameters and preventing overfitting by utilizing a 
distinct validation dataset. The suggested model’s 
flowchart is depicted in Fig.6. Once the model has been 
validated, it is next assessed using a separate test dataset 
in order to evaluate its performance. Metrics like Mean 
Squared Error (MSE) are used to measure the precision 
of load projections. 

4. RESULTS ANALYSIS 

In this study, the performance of the suggested GRU 
model is compared to the Multi-Layer Perceptron (MLP) 
technique (Hontoria, Aguilera, & Zufiria, 2005). 
Forecasting curves and error metrics are used to 
demonstrate the model's superiority in certain load 
forecasting tasks for water pumping stations. Table 1 
displays model results by batch size, epoch, optimizer, 
and dropout rate for each technique. Observations 
indicate that the GRU model outperformed the MLP 
model by 3% in terms of training MSE. Furthermore, in 
terms of the overall MSE, the GRU yielded results that 
were 16% superior to those of the MLP. It is evident that 
GRU yields greater outcomes in terms of prediction. 
Furthermore, Fig. 7 depicts the training and validation 
curves for the GRU model. Empirical evidence 
demonstrates that the training and validation curves 
exhibit a high degree of consistency by achieving a rapid 
and reliable convergence. This demonstrates the efficacy 
of GRU in terms of minimizing loss and accurately 
predicting the projected outcomes. The optimal 
validation accuracy in GRUs is perceived due to their 
specialized architecture for handling sequential input and 
capturing long-term relationships. GRUs provide 
enhanced robustness in extrapolating to unfamiliar data 
owing to their capacity to preserve and manipulate 
information over extended sequences, hence mitigating 
the risk of overfitting. The design of GRUs naturally 
serves as a method of regularization by preserving 
pertinent information over time, hence mitigating the risk 
of overfitting. GRUs excel at managing temporal 
dependencies and sequential patterns, resulting in 
superior adaptation to validation data. On the other hand, 
Fig. 8 displays the train and validation curves for the MLP 
model. It has been noted that although the MLP model's 
training performance demonstrates early convergence, 
the validation curve exhibits irregular patterns in terms of 
prediction.  

The validation accuracy decreases in the MLP model 
due to the challenges faced by the feedforward neural 
network design in capturing temporal relationships in 
sequential input. MLP is particularly susceptible to 
overfitting, particularly when the dataset is insufficient in 
size or when the network is too deep. The model has 
achieved high performance on the training data, even 
when faced with noise and certain patterns that do not 
apply to fresh data. Nevertheless, MLPs that include 
several layers and neurons have a significant capability to 

recall the training data, resulting in a low training error 
but an elevated validation error. 

Moreover, Fig. 9 illustrates the comparison between 
the actual and anticipated values for all the samples using 
the suggested method. The GRU model's predictions (red 
dots) closely correspond with the true data (blue dots), as 
per the zoomed version depicted in Fig. 10. The findings 
shown in Fig. 10 illustrate that the GRU model has 
effectively identified the temporal correlations of the 
water system electrical load data and produced improved 
outcomes. GRUs have superior predictive capabilities 
because of their specialized architecture for sequential 
data processing. GRUs possess latent states that gather 
information from preceding time steps, making them 
proficient in acquiring temporal dependencies. Moreover, 
GRUs possess gating mechanisms, namely update and 
reset gates, which aid in preserving long-term 
dependencies and eliminating extraneous input.   

Furthermore, GRUs have the ability to catch extended-
term trends and recurring patterns that are inherent in 
load data, resulting in more precise predictions. 
Nevertheless, the outcomes shown in Fig. 10 exhibit a 
much higher level of excellence as they demonstrate a 
closer alignment, hence substantiating the fact that GRU 
has surpassed MLP in terms of forecasting performance.    

GRUs benefit from their capacity to dynamically 
update the hidden state, enabling them to effectively 
represent intricate temporal patterns. Moreover, GRUs 
have the ability to acquire representations straight from 
unprocessed sequential data without the need for 
complex feature engineering. This simplifies the process 
of modelling and has the potential to enhance forecasting 
accuracy Furthermore, Fig. 11 presents a comparison 
between the real and predicted values for all the samples 
using the recommended approach, with a closer view 
shown in Fig. 12. GRUs outperform MLPs in terms of 
predicting accuracy because MLP feedforward neural 
networks handle inputs in an environment that 
disregards the sequential nature of the data. This reduces 
their effectiveness in recording temporal dependencies. 
In order to process sequential data, MLPs need thorough 
feature engineering, including the creation of lag features. 
However, this process may be intricate and may not 
entirely capture the fundamental patterns present in the 
data. In addition, MLPs have the constraint of requiring 
input vectors of a set length. This might be a barrier when 
working with sequences of varying lengths in load 
forecasting. Furthermore, Figures 9 and 11 demonstrate 
that both models projected some negative values. This is 
because a significant number of the load levels were close 
to zero, which we identify as a research needs to be 
addressed in the future. 
 

5. CONCLUSION 
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This study presents a novel approach that uses GRUs to 
predict the load requirements of water pumping stations 
in Jebel Akhdar. The proposed model is designed to 
explicitly capture the time-series relationships and 
complex patterns that naturally exist in large-scale load 
datasets. This research specifically examines the unique 
difficulties of load forecasting at Jebel Akhdar. Results 
show that considering the overall MSE, the GRU 
produced outcomes that were 16% better than those of the 
MLP. Furthermore, empirical data shows that the 
training and validation curves display a stable curve with 
early and consistent convergence. In addition, the 
predictions of the GRU model closely align with the actual 
data, demonstrating that the suggested model has 
successfully recognized the time-based relationships in 
the water load data and generated enhanced results. In 
conclusion, this work develops an efficient forecasting 
method to facilitate the operational efficiency of water 
pumping stations by offering accurate load estimates. 
Possible future contributions may include extending the 
GRU-based approach to incorporate additional factors, 
such as weather patterns to enhance the accuracy. 
Moreover, integrating attention mechanisms into the 
GRU model can improve the model's ability to identify 
inherent patterns within the load data. 
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