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 استخراج الب�انات لتع��ز الأمان: إطار تح���ي لحما�ة الشبكات الذك�ة 

� س. الداوري ,ر�يع أ. رمضان ي  مع�ت  ،إسماع�ل س. المن�ي

ي س�اق الشبكات الذك�ة. مع ز�ادة عدد الأجهزة والمستشعرات المتصلة  الملخص: 
،  تناقش الورقة تقاطع نظم الطاقة التقل�د�ة والمعلومات�ة الحديثة ��

ي نفس الوقت. الهدف الرئ��ي هو تع��ز أمان ال
ات  شبك تولد الشبكات الذك�ة ه�ا�ل معقدة وكم�ات هائلة من الب�انات، مما �قدم فوائد وتحد�ات ��

نت الأش�اء (AIالذك�ة باستخدام تقن�ات استخراج الب�انات والذكاء الاصطنا�ي (  ي الشبكات  IoT). �شكل الب�انات الناتجة عن العد�د من أجهزة إن�ت
�� (

� الخدمات والحما�ة. لمعالجة هذە التحد�ات،  ا لتحسني ا فرص� ، ول�نها توفر أ�ض� ي الوقت الفع�ي
ح الورقة نهج  الذك�ة تحد�ات تحل�ل�ة، خاصة �� تق�ت

� النظام من التك�ف مع المخاطر المحتملة. ي � الشبكة الذك�ة من مختلف الشذوذات وتمكني تيح هذا  التعلم العميق التقد�ي لاستخراج الب�انات لتأمني
ح باستخدام مجموعات ب�انات هجما ا مع التهد�دات الناشئة. تم اختبار النظام المق�ت ت نظام الطاقة من جامعة ولا�ة  النهج للنظام التك�ف دينام�ك��

، وحقق دقة ا�تشاف بلغت   ي ي ومخت�ب أوك ر�دج الوطي� ات مجموعة الب�انات. كما تم اختبار �سب  50٪ باستخدام  91م�س�سييب � ٪ فقط من م�ي
ات، وخلصت الدراسة إ� أن  � ات كاف�ة لتحد�د مخاطر الشبكة الذك�ة بناءً ع� مجموعة الب50مختلفة من الم�ي �  �انات. ٪ من الم�ي

؛ الب�انات الضخمة ال�لمات المفتاح�ة:   .الشبكات الذك�ة؛ الطاقة المستدامة؛ الأمان؛ الع� الرق�ي
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ABSTRACT: Smart grids fall at the intersection of conventional energy systems and modern informatics in the 
present digitalized energy environment. The growing number of linked devices and sensors in these networks leads 
to the generation of complex structures and vast quantities of data, presenting benefits and challenges. Safeguarding 
these complex structures against malicious intrusions and illegal activities is an important problem. The paper's main 
objective is to enhance smart grid security by utilizing the data mining and Artificial Intelligence (AI) approaches. As 
huge amounts of data are collected from the smart grids based on tiny and smart internet of things (IoT) devices, this 
data poses challenges as well as provides opportunities. The challenges come from analyzing this huge data, especially 
in real-time. At the same time, it provides opportunities to enhance the smart grid services and protection. Therefore, 
to overcome these challenges, this paper proposes a feedforward deep learning approach for data mining to secure 
the smart grid from different anomalies and allow the system to adapt to any risk it might face. Deep learning will 
allow the system to adjust dynamically to emerging risks. The proposed system has been examined using Power 
System Attack Datasets sourced from the Mississippi State University and Oak Ridge National Laboratory. The results 
show a detection accuracy of 91% just using 50% of the dataset features. Different percentages of the features are 
examined as well. However, we concluded that 50% of the features are enough for identifying the smart grid risks 
based on the given dataset. 
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1. INTRODUCTION 

In our modern world, most traditional power grids have 
been replaced by smart power grids, smart grids for 
simplicity.  These smart grids facilitate the inclusion of 
information systems and data collection utilizing many 
sensors and devices (Borlase, 2017). This integration 
between the smart grids of information systems makes it 
possible to advise energy reliability and sustainability. It 
offers valuable insights into grid status, operation, and 
user activities. It allowed researchers to investigate many 
of the grid issues, as well as industries, to expand their 
utilization of the grids. Researchers were able to identify 
patterns, trends, and anomalies that allow a deep 
understanding of the grid dynamics. So, researchers 
identified the factors that influence grid reliability, 
efficiency, and overall performance, enabling 
policymakers and industry to be more informed in 
decision-making. They allow them to implement effective 
grid operation strategies. However, integrating smart 
grids and information systems technology raises new 
challenges, such as security issues. It also raises many of 
the smart grid's vulnerabilities that could possibly disrupt 
energy delivery systems, attach customer privacy, and 
manipulate the energy market.   
At the same time, the sectors and organizations are facing 
significant transformation from traditional systems to 
new smart grids.  In fact, most of the time, they combine 
traditional systems and the latest advancements in 
modern information systems (Rohde & Hielscher, 2021). 
These advancements include involving customers in the 
process of energy management and enhancing the 
efficiency of power grids. This has also raised another 
level of security where many tiny sensors are involved in 
the smart grid management operations (Tuballa & 
Abudno, 2016). Therefore, based on recent research, 
security has become a serious issue of newly developed 
smart grid networks (Clastres, 2011).  
Thus, it is obvious that the smart grids' security, 
management, and operations are critical issues in this 
context. In fact, many cyberattacks pose huge risks to the 
smart grid infrastructure and its ecosystem (Kim et al., 
2023), which is of great importance on the national and 
international levels. This has attracted many researchers 
and scholars investigating the topic. There is also a large 
number of features found in some datasets related to 
smart grids (Morris & Gao, 2014), which points to the 
importance of finding a smaller size of features to give 
good detection accuracy. There are not many studies that 
explore this type of experimentation in this field. 
At the same base, Artificial Intelligence (AI) techniques 
are emerging.  It allows knowledge to be acquired from 
raw data and can be efficiently adapted to detect any 
possible variabilities. AI techniques are also effective in 
the early detection of risks in real-time systems such as 
smart grid systems, ensuring data integrity. 
The challenge in the field of smart grid security is the 
timely identification and mitigation of security incidents. 

The current security mechanisms tend to be more 
responsive than anticipated since they face challenges in 
keeping up with the constantly evolving environment of 
cyber threats and the complex architecture of the smart 
grid system. In addition, the vast amount and rapid rate at 
which smart grids produce data provide a challenge to 
conventional security processes, hindering the detection 
of significant patterns that may indicate an imminent 
security breach. The delay in identifying abnormalities 
often leads to substantial reaction time delays, during 
which the potential threat may become severe and 
permanent. Identifying anomalies and possible security 
breaches is complicated by distinguishing between normal 
irregular patterns that arise from abnormal but approved 
use and those that signify security risks. Figuring this out 
is hard because the grid's usage pattern constantly 
changes. This is because of things like weather, customer 
behaviour, and the way the energy source works. 
The primary concern examined in this study is the 
insufficiency of traditional security systems in effectively 
identifying and reacting to evolving and intricate threats 
inside the information-abundant setting of intelligent 
power grids. There exists a pressing need for the 
development of a security framework that has the 
capability to: 
• Effectively analyze and interpret vast amounts of 

operational data to identify subtle, complex patterns 
indicative of security anomalies. 

• Operate in real-time to provide timely detection and 
mitigation to counter potential threats before they 
escalate into full-scale security incidents. 

• It can be rebuilt to learn and evolve, adapting its 
detection capabilities to the ever-changing cyber 
threats and smart grid operations landscape.      

This paper aims to explore the possibility of data mining 
and AI techniques for reshaping the security of smart 
grids. Certainly, this research will be of interest to many 
entities, including the smart grid industry, policymakers, 
and customers. The paper proposes a novel framework for 
smart grid security that is possible to affect energy future 
security. The study also focuses on which features are the 
most important for smart grid security to achieve the 
highest accuracy possible. 
The method used in this paper utilized AI for data mining 
to the huge amount of data collected and transferred from 
the smart grid devices. It aims to identify the early 
anomalies, the behaviour of the data, and security 
breaches. It detects early induction to unauthorized 
access and patterns of the smart grids and prevents the 
problem from escalating. 
The significance of this study is to provide the following: 
• A new method design for smart grid protection. This 

method involves the use of a feed-forward deep 
learning approach. 

• An analysis that supports employing feature 
reduction methods and careful feature selection to 
boost the efficacy of machine learning models. The 
method utilizes the random forest (RF) approach to 
rank the features for selection. 
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• A strategy that can be employed to make a machine 
learning model adaptive for rebuilding to detect new 
security threats. This strategy suggests the use of 
ensemble techniques for adapting to new security 
threats.  

 
2. RELATED WORK 

Smart grid cybersecurity has been extensively investigated 
by many researchers in recent years.  The first paper 
explored here is the one that tried to integrate blockchain 
technology with machine learning for the purpose of 
protecting smart grids (Tuballa & Abundo, 2016). It 
targets the security of peer-to-peer energy transfer in some 
of the applications. Also, the authors reviewed some of the 
collaborative state-of-the-art technology for smart grids. 
Furthermore, the authors of (Huda et al., 2024) discuss 
the importance of smart home technology and their 
automation in developing smart cities.  Part of the smart 
cities is the smart grid where advanced technologies could 
be used. The research showed the importance of modern 
technologies in smart cities such as Digital Twin and 
Federated Learning. Those technologies facilitate the 
development of urban areas as well as smart grids. As an 
extension, the authors of (Hasan et al., 2023) investigated 
the cybersecurity and complex variabilities of smart grids 
through different types of analysis.  Furthermore, the 
authors (Bouramdane, 2023) focus on different smart grid 
attacks that have significant effects on smart grid power 
transfer as well as the devices.  They demonstrated the 
efficiency of artificial intelligence techniques in detecting 
some of these attacks.  
Also, extensive research was conducted by Bouramdane, 
(2023), examining the cyber-physical characteristics of 
smart grids and showed that there are a number of 
complexities and variabilities associated with smart grids.  
They examined the overall systems of the smart grid to 
reach this conclusion.  In relation to the cybersecurity of 
smart grids, the authors (Bouramdane, 2023) investigated 
some of the cybersecurity attacks that could be conducted 
on smart grids and concluded that AI algorithms could be 
beneficial in protecting smart grids from such attacks, 
especially deep learning.  Furthermore, (Sifat et al., 2023), 
the authors introduced a Digital Twin grid for data 
analytics and stressed that blockchain technology could be 
beneficial to smart grid security.   
In (Wasumwa, 2023) the authors investigated the 
utilization of collaborative strategies and explored 
emerging technologies in smart grid security.  Again, the 
focus is on the combination of blockchain technology and 
deep learning for the benefit of smart grid security.  They 
also, recommend them to the future of smart grids to avoid 
the current and future risks.  One of the possible attacks 
on the smart grids is the face data injection attack which 
affects the reliability and security of the collected data and 
their analysis.  This has been studied by (Habib et al., 
2023).  Similarly, the authors recommended collaborative 
and advanced technology for handling these security 

issues.   
Once more the authors of (Ding et al., 2022) investigated 
the different cybersecurity attacks that have been noticed 
on smart grids.  They reported 10 10-year analyses and the 
threats and risks that faced smart grids during this period.  
Also, they stressed the importance of blockchain and AI 
techniques in protecting smart grid data. on the same 
track, the authors of (Mazhar et al., 2023) studied the 
utilization of IoT devices for data collection and how they 
can be beneficial in pattern recognition.  On the other 
hand, (Murugeshwari et al., 2023) presented encryption as 
a solution to smart grid data security.  they proposed an 
elliptic curve as one of the encryption techniques for 
privacy protection. their proposal also involves cloud-
based data analysis.   Simultaneously, the paper (Mirzaee 
et al., 2022) investigated the many security and privacy 
challenges that smart grids encounter, emphasizing the 
increased vulnerabilities posed by improved automation 
and communication technologies, as well as the inclusion 
of machine learning. 
Sifat et al. (2023) presented the digital twin concept's 
transformative potential for smart grids in a well-written 
paper. This study stressed the need for predicting the 
future and real-time grid monitoring, particularly when 
applying blockchain technology to increase cybersecurity. 
In relation to education, the article (Kamsamrong et al., 
2022) from the "Cybersecurity Curricula 
Recommendations for Smart Grids" initiative identified 
substantial skills deficiencies within the European Union. 
It endorsed better cybersecurity education for smart grid 
security by providing practicable, useful programs, online 
courses, and gamification components to boost 
participation. 
Furthermore, the study by (Bhattacharya et al., 2022) 
highlighted the importance of incentive mechanisms in 
smart grids. It addressed the problems and still unsolved 
issues with data quality, privacy, and security, as well as 
the application of technologies such as game theory, 
blockchain, and AI in implementing these incentives. 
In (Guo et al., 2022), the authors presented a deep-
federated-learning architecture. Using real-world 
datasets, they proved their usefulness in strengthening the 
security of Point of Interest (POI) microservices in cyber-
physical systems. 
Even with much of the existing research, insufficient 
information is known about the potential applications of 
advanced data mining techniques to enhance the security 
and real-time monitoring of smart grids. To address this 
gap, this paper provides a novel approach for detecting 
potential security breaches that combines decision trees 
and deep learning. This framework contributes to the 
development of smart grid cybersecurity research by 
attempting to develop new paradigms for smart grid 
security and offering practical alternatives for businesses 
in data-rich environments. 

 
 
.



Journal of Engineering Research, 2024, 21(1),23-32 

26 

Table 1. Pros and cons of the related work methodologies.  
Reference Technology/M

ethod 
Pros Cons 

(Tuballa & 
Abundo, 
2016) 

Blockchain + 
ML 

Peer-to-peer energy transfers security 
enhancement and integration of collaborative 
technologies. 

Integrating blockchain with existing ML 
models could be complex.  

(Huda et al., 
2024) 

Smart Home 
Tech 

It facilitates urban area development, and it is 
essential to smart city frameworks. 

It may increase dependency on digital 
technologies, which raises privacy concerns. 

(Hasan et al., 
2023) 

Cyber-
Physical 
Analysis 

It addresses variabilities in smart grids it is 
involves comprehensive system review. 

The complexity of the systems may 
introduce new vulnerabilities. 

(Bouramdane, 
2023) 

AI for Attack 
Detection 

It is effective in detecting smart grid attacks, 
and it uses advanced AI techniques. 

AI models may require extensive data and it 
may be prone to sophisticated attacks. 

(Sifat et al., 
2023) 

Digital Twin + 
Blockchain 

Blockchain offers real-time monitoring and 
increased cybersecurity. 

The implementation costs are high and need 
significant infrastructure overhaul. 

(Wasumwa, 
2023) 

Blockchain + 
Deep Learning 

It is a promising security approach for future 
security measures against advanced threats. 

It is still in exploratory stages; it may not be 
fully practical for current grid systems. 

(Habib et al., 
2023) 

False Data 
Injection 
Study 

It highlights the critical vulnerability and 
proposes some of the countermeasures. 

Focusing on one type of attack might not be 
generalized to other threats. 

(Ding et al., 
2022) 

Blockchain + 
AI 

The paper provided a long-term analysis 
emphasizing blockchain and AI for data 
protection. 

It requires continuous updates and 
maintenance of AI models and blockchain 
systems. 

(Mazhar et 
al., 2023) 

IoT + AI It enhances smart grid operations in terms of 
data collection and pattern recognition. 

If not properly secured, IoT devices can be 
entry points for cyberattacks  

(Murugeshwa
ri et al., 2023) 

Encryption 
(Elliptic 
Curve) 

It utilizes advanced encryption techniques 
and is expected to have strong privacy 
protection. 

 Implementation challenges to the complex 
encryption. 

(Mirzaee et 
al., 2022) 

ML for 
Security 

Detailed exploration of ML threats and 
countermeasures. 

High dependency on data quality and 
availability; potential for overfitting. 

(Kamsamron
g et al., 2022) 

Cybersecurity 
Education 

Promotes essential skills development and 
innovative teaching methods like 
gamification. 

It may not immediately impact the current 
workforce's ability to handle cybersecurity 
threats. 

(Bhattacharya 
et al., 2022) 

Game Theory 
+ Blockchain 
+ AI 

Addresses incentive mechanisms along with 
tech integration for enhanced security. 

Complex integration of multiple advanced 
technologies can be challenging. 

(Guo et al., 
2022) 

Deep 
Federated 
Learning 

Proved effective in enhancing security for 
microservices in cyber-physical systems. 

It still requires further real-world testing 
and validation for widespread deployment. 

 

 
Figure 1. Smart grid proposed analysis and monitoring 

structure 
 
 

3. PROPOSED FRAMEWORK AND 
APPROACHES 

This section describes the proposed framework for the 
security of the smart grids. It considers the mentioned 
issues in the problem statement section. It also considers 
distributed analysis instead of centralized analysis due to 
the huge amount of data collected from the grids. The 
proposed framework assumes different sensors are 
already deployed on the smart grid units. Figure 1 shows 
the proposed security system where the smart grids are 
connected to a switch, which is used to capture the data for 
analysis and monitoring. The system is responsible for the 
heavy processing and overall decisions related to data 
analysis or security. 
The details of the procedures and techniques used in the 
research are provided in the following subsections. This 
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includes information on materials, experimental setup, 
and data collection methods. The information should be 
detailed enough to allow replication of the study. 
 
3.1 Dataset Description 
This paper utilizes a dataset from the "Cybersecurity 
Curricula Recommendations for Smart Grids" project 
(Morris & Gao, 2014). It is an in-depth compilation made 
to examine and improve smart grid security. The dataset 
is composed of one initial set, which consists of 15 sets, 
each including 37 power system event scenarios. The 
datasets are categorized into Binary, Three-class, and 
Multiclass datasets. They are structured in ARFF and CSV 
formats to ensure compatibility with different 
applications. 
Two power generators (G1 and G2), four Intelligent 
Electronic Devices (IEDs, R1 to R4), regulating breakers 
(BR1 to BR4), and two lines linking these breakers 
compose the power system architecture upon which the 
scenarios in the dataset are developed. The two gas turbine 
generators (G1 and G2) have a capacity of 150 megawatts 
each. They also operate at 13.8 kilovolts, which are 
essential for generating electricity.   They also work at a 
frequency of 60 Hz with control features such as automatic 
voltage regulators and speed control governors.  Certainly, 
this enhances the stability and reliability of power output 
under different load conditions.  The system also 
integrates four intelligent electronic devices (IEDs) (R1 to 
R4) for system integrity.  The main purpose of those IEDs 
is to monitor and quickly isolate faults by calculating the 
impedance to the fault using the distance protection 
method.  Therefore, the tripping of circuit breakers is 
controlled.  Also, the manual control of falls is considered 
an option for system flexibility. The communication of 
these IEDs via IEC 61850 protocol. That ensures reliable 
data exchange across the smart grid. Vacuum circuit 
breakers (BR1 to BR4) are also associated with IEDs with 
breaking capacities of 40 KA. They work at a system 
voltage of 13.8 kV. Those brakes have spring mechanisms 
for reliable operational responses to fault conditions.  Two 
main transmission lines link these breakers, forming a 
robust network for reliable electricity distribution with 
multi-point protection. 
The dataset covers the following forms of scenarios: data 
injection (Attack), relay configuration modifications 
(Attack), remote tripping command injections (Attack), 
and short-circuit problems. Every one of these scenarios 
illustrates a distinct facet of a possible attack vector or 
vulnerability in a smart grid system. Short-circuit 
problems, for example, can occur anywhere along a power 
line. On the other hand, data injection attacks try to 
change variables, including current-voltage sequence 
components, to make operators blind by triggering 
blackouts. 
The dataset includes 128 characteristics from 
measurements made by phasor measuring units (PMUs), 
which gauge electrical waves on the electrical grid. Each 
PMU has 29 different kinds of measurements, for a total 
of 116 measurement columns. Twelve columns are also 

available for relay logs, Snort alerts, and control panel 
logs. These characteristics and metrics are essential for 
evaluating the performance and security of smart grid 
systems. 
 
3.2 Proposed Method Design 
The proposed approach employs a feature selection 
method to measure the importance of the features in the 
dataset. Since the dataset includes 128 features, reducing 
the number of features may be necessary. This step makes 
the process of detecting attacks/faults faster and, in 
general, creates a lighter approach. For this task, a random 
forest (RF) measures the features’ importance (Hasan et 
al., 2016). The feature selection with RF falls within the 
embedded methods group. The advantages of wrapper and 
filter techniques are combined in this embedded 
approach. They are carried out by algorithms with 
integrated feature selection techniques of their own. The 
features that are chosen at the top of the decision trees are 
typically more important than the selected features at the 
leaf nodes of the trees to provide a better understanding 
because top splits typically result in larger information 
benefits. Thus, the features are ranked based on their 
position in the trees. Furthermore, there are generally two 
ways to measure their importance besides their locations: 
the Gini importance index and the permutation 
importance index. The same procedure is used in this 
study as in (Hasan et al., 2016) to measure the features' 
importance. 20%, 50%, 80%, and then all the features are 
used in a neural network (NN) to test the performance of 
these features. It will also show how powerful the RF is for 
measuring and selecting the most important features. 
The overall steps of the proposed method are shown in 
Figure 2. The first step of the method involves cleaning, 
transforming, and integrating the available sets of the 
dataset into one. Once the data is integrated, a 
normalization method called MaxAbsScaler maps the 
values of the datasets into -1 and 1. For instance, if we have 
the values 1, -1, and 2, they will be normalized as 0.5, -1, 
and 1. This normalization method gives the activation 
function, i.e., the hyperbolic tangent function, better 
values since this function maps the inputs to values of -1 
and 1, which can be more suitable for it. 
Once the data is prepared and ready for training, the 
feature selection approach (based on the RF) will find 
which features are important to indicate the top 20%, 50%, 
80%, and 100%. Further, these sets of top features are 
used to train a neural network with different 
configurations to find the final results for discussion and 
recommendations. 
 
3.3 Classification Model Design 
The model used for classifying the attacks/faults in the 
used dataset consists of using an NN. A typical NN (as 
shown in Figure 3) includes input, hidden, and output 
layers, and the more complex the data, the more hidden 
layers may be added to make the network learn from the 
data better. That concept is called deep learning. In this 
study, a network with two hidden layers. As for the 
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features, different amounts of features are used, i.e., 20%, 
50%, 80%, and 100%.  In Figure 3, the number of inputs n 
is equal to 26 (20%), 64 (50%), 102 (80%), and 128 
(100%), whereas the number of hidden nodes z is equal to 
100 at each hidden layer. 
 

 
Figure 2. Overall steps of the proposed method. 
 

 
Figure 3. Neural network design. 

Table 2. Experiment setup.  
Settings Value/approach 

Number of hidden 
nodes 

200 (two hidden layers of each 100 
nodes) 

Number of inputs 26, 64, 102, and 128 

Number of outputs Binary (either 0 or 1) 

Learning rate 0.01 

Number of epochs 200 and 400 

Optimization 
algorithm 

Adam 

Number of instances 78377 

4. RESULTS AND DISCUSSION 

After running the feature selection approach, the features 
with the highest importance are listed and sorted, 
provided in Table 3. 
Given the selected settings (see Table 2), the test's 
classification measurement is calculated based on the 
confusion matrix (Godbole, 2002). This is a commonly 
used approach for measuring the performance of a 
classification task, finding various measurements, such as 
the detection accuracy and false alarm rate regarding the 
actual label and predicted label. The confusion matrix is 
provided in Table 4. 
The results (using the confusion matrix) are given in 
Tables 5, 6, 7, and 8, respectively, for the top 20%, 50%, 
80%, and 100% of the features. The number of instances 
used for this test is a randomized 20%, as the other 80% 
was used for the training phase. 
As shown in Figure 4, the training loss for 20% of the top 
features illustrates that it can get below the value of 0.4 
after approximately 125 epochs, whereas looking at the 
others, the loss went below 0.4 after less than 75 epochs. 
The final training loss after 400 epochs for the top 50% 
is similar to that of the 80% and 100%; thus, it can be 
concluded from this that the top 50% of the features are 
sufficient for achieving low training error values. 
Based on the data given in the confusion matrices, the 
detection rate (Drate), accuracy, and false alarm rate 
(FARate) are provided in Table 9. These measurements 
are calculated using the following equations: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                        (1) 

𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝐹𝐹𝑇𝑇
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

                         (2) 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇+𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇+𝐹𝐹𝐹𝐹

                   (3) 

The proposed evaluation questions are critical for 
assessing the classification model performance. In 
equation (1), the Detection Rate (DRate) is the Sensitivity 
or True Positive Rate. It measures the actual positive 
instances that are correctly identified by the model. The 
True Positives (TP) are considered as the instances 
correctly identified as positive while False Negatives (FN) 
are positive instances incorrectly labelled as negative. 
Equation (2) defines the False Alarm Rate (FARate), also 
considered the False Positive Rate.  It highlights the 
proportion of negative instances that are erroneously 
classified as positive. It is mainly important for false 
alarm identification. Equation (3) is used to calculate the 
accuracy of the proposed model. It represents the true 
results, either positive or negative cases. The accuracy 
equation has all four components of the confusion matrix. 
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Table 3. Feature importance (sorted top-down, left-to-right).  

Feature Importanc
e Feature Importance Feature Importance Feature Importance 

R2-PM12:I 1.89E-02 R1-PM6:I 1.22E-02 R4-PA3:VH 9.06E-03 R2:F 2.72E-03 

R3-PA9:VH 1.59E-02 R4-PM6:I 1.22E-02 R4-PM1:V 9.02E-03 R1-PA2:VH 2.66E-03 

R2-PA1:VH 1.58E-02 R2-PA4:IH 1.21E-02 relay2_log 8.89E-03 R1-PM10:I 2.66E-03 

R4-PA6:IH 1.57E-02 R4:S 1.21E-02 R1-PA9:VH 8.69E-03 R3:F 2.65E-03 

R4-PA9:VH 1.56E-02 R3-PM11:I 1.21E-02 R3-PM12:I 8.65E-03 R4-PA8:VH 2.56E-03 

R2-PM7:V 1.56E-02 R1-PM8:V 1.18E-02 R3-PM2:V 8.57E-03 R1-PA3:VH 2.56E-03 

R3-PA6:IH 1.54E-02 R3-PA5:IH 1.18E-02 R3-PM6:I 7.78E-03 R1-PA:ZH 2.49E-03 

R2-PA:Z 1.53E-02 R3-PM10:I 1.17E-02 R3:DF 7.33E-03 R1-PA8:VH 2.39E-03 

R3-PM1:V 1.50E-02 R2-PA:ZH 1.16E-02 R4-PA12:IH 6.19E-03 control_panel_lo
g4 8.27E-04 

R2-PA7:VH 1.47E-02 R4-PM5:I 1.15E-02 R3:S 6.18E-03 control_panel_lo
g1 6.97E-04 

R1-PM12:I 1.39E-02 R1-PM1:V 1.15E-02 R4-PA:ZH 5.92E-03 R2:S 5.34E-04 

R2-PM11:I 1.37E-02 R1-PA:Z 1.14E-02 R1-PA5:IH 5.72E-03 control_panel_lo
g3 4.74E-04 

R3-PM5:I 1.37E-02 R1-PM5:I 1.14E-02 R4-PA11:IH 5.50E-03 R1-PA1:VH 4.15E-04 

R2-PA6:IH 1.36E-02 R2-PM2:V 1.13E-02 R2-PA2:VH 5.38E-03 control_panel_lo
g2 3.77E-04 

R4-PM7:V 1.34E-02 R3-PA3:VH 1.12E-02 R2-PA3:VH 5.34E-03 R1-PM3:V 3.65E-04 

R4:DF 1.34E-02 R3-PA:ZH 1.10E-02 R4-PM4:I 5.32E-03 R2:DF 3.31E-04 

R2-PM5:I 1.34E-02 R1:F 1.09E-02 relay4_log 5.22E-03 R4:F 3.25E-04 

R4-PM11:I 1.34E-02 R4-PM12:I 1.08E-02 R1-PA11:IH 5.12E-03 R3-PA:Z 2.29E-04 

R1-PM11:I 1.33E-02 R3-PA12:IH 1.08E-02 relay1_log 4.86E-03 R2-PA8:VH 1.89E-04 

R3-PM3:V 1.33E-02 R1-PA6:IH 1.07E-02 R3-PM4:I 4.85E-03 R3-PA4:IH 1.77E-04 

R3-PA1:VH 1.32E-02 R4-PA5:IH 1.06E-02 R3-PM8:V 4.60E-03 relay3_log 1.39E-04 

R1-PM2:V 1.29E-02 R4-PM8:V 1.06E-02 R2-PA12:IH 4.46E-03 R4-PA2:VH 1.12E-04 

R2-PM3:V 1.28E-02 R3-PM7:V 1.06E-02 R2-PA10:IH 4.41E-03 R1-PM7:V 9.30E-05 

R2-PM6:I 1.28E-02 R2-PM1:V 1.04E-02 R4-PA7:VH 4.35E-03 R1-PA12:IH 7.46E-05 

R4-PA1:VH 1.27E-02 R1-PA4:IH 1.01E-02 R3-PA2:VH 3.63E-03 R1-PM9:V 9.29E-06 

R3-PA8:VH 1.27E-02 R1-PA10:IH 9.87E-03 R1:S 3.61E-03 R4-PM9:V 3.95E-06 

R4-PA:Z 1.27E-02 R2-PA9:VH 9.83E-03 R2-PM4:I 3.48E-03 R3-PM9:V 2.88E-06 

R2-PA5:IH 1.26E-02 R4-PM10:I 9.72E-03 R1-PA7:VH 3.46E-03 R2-PM9:V 2.32E-06 

R4-PM2:V 1.26E-02 R3-PA7:VH 9.51E-03 R3-PA10:IH 3.46E-03 snort_log1 1.20E-06 

R4-PA10:IH 1.24E-02 R4-PA4:IH 9.51E-03 R3-PA11:IH 3.43E-03 snort_log3 0.00E+00 

R1-PM4:I 1.24E-02 R2-PM10:I 9.37E-03 R2-PM8:V 3.43E-03 snort_log2 0.00E+00 

R1:DF 1.23E-02 R4-PM3:V 9.14E-03 R2-PA11:IH 3.36E-03 snort_log4 0.00E+00 

Table 4. Confusion matrix of the test.  
Actual label Predicted label 
 

Normal Faults/attacks 

Normal True negative (TN) False positive (FP) 

Faults/attacks False negative (FN) True positive (TP) 

 

Table 5. Confusion matrix results for the top 20% of the 
features.  

Actual label Predicted label 
 

Normal Faults/attacks 

Normal 3664 931 

Faults/attacks 943 10138 
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Table 6. Confusion matrix results for the top 50% of the 
features.  

Actual label Predicted label 
 

Normal Faults/attacks 

Normal 3854 751 

Faults/attacks 641 10430 

 
Table 7. Confusion matrix results for the top 80% of the 

features.  
Actual label Predicted label 
 

Normal Faults/attacks 

Normal 3646 922 

Faults/attacks 634 10474 

 
Table 8. Confusion matrix results for the top 100% of the 
features.  

Actual label Predicted label 
 

Normal Faults/attacks 

Normal 3568 862 

Faults/attacks 758 10488 

 
Table 9. Model evaluation.  
Set of features Detection rate 

(Drate) 
Accuracy False alarm 

rate (FARate) 
20% of top 
features 

91.48% 88.04% 19.45% 

50% of top 
features 

94.21% 91.12% 16.30% 

80% of top 
features 

94.29% 90.07% 20.18% 

All features 93.25% 89.66% 19.45% 

 
Furthermore, the behaviour of the training is captured by 
measuring the error at each epoch. This is demonstrated 
in Figure 4. 
The results given provide valuable insights into the effect 
of feature selection on the efficacy of a machine learning 
model, as demonstrated by the metrics above—FARate, 
Accuracy, and Drate. Substantial observations can be 
drawn from a nuanced examination of these results 
regarding the correlation between the number of 
features applied and the model's effectiveness. 
Beginning with the Drate, an insightful trend becomes 
obvious. As the proportion of the best features in the 
feature set increases from 20% to 80%, the Drate 
improves, achieving a maximum of 94.29% with 80% of 
the features. When every feature is taken into account, 
however, the Drate decreases marginally to 93.25%. This 
conclusion suggests that adding additional features 
improves the model’s ability to detect true positives. 
However, there is a threshold beyond which additional 
features may not necessarily result in enhanced 
detection or may even have the opposite effect. The 
observed outcome may be due to unnecessary or 
redundant data, limiting the model’s capacity. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

  

Figure. 4. Training loss at each epoch where (a) using 20% 
of the top features, (b) using 50% of the top 
features, (c) using 80% of the top features, and (d) 
using all features. 
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When examining the accuracy of the model, a similar 
trajectory becomes obvious. The model's accuracy 
increases from 88.04% when 20% of the features are 
utilized to 91.12% when half of the top features are 
implemented. This enhancement suggests that the 
inclusion of the supplementary features improves the 
model’s overall performance in accurately categorizing 
positive and negative instances. However, with 80% of 
the features, the accuracy reduces significantly to 
90.07%, and to 89.66% with every feature. The observed 
reduction as the level of feature inclusion increases 
could signify overfitting, a phenomenon in which the 
model becomes overly intricate and begins to attribute 
learning to noise rather than the true underlying 
patterns in the data. 
The False Alarm Rate provides further clarification. The 
minimum FARate achieved by the model is 16.30% 
when 50% of the best features are utilized. The observed 
increase in FARate at higher feature levels (20.18% with 
80% of the features and 19.45% with all features) 
suggests that the model may be erroneously classifying 
negative cases as positive due to the inclusion of an 
excessive number of features. Once more, this increase 
in false positives at higher feature levels suggests that 
the model may be inundated with irrelevant or noisy 
data. 
Therefore, these results underscore the significance of 
optimal feature selection in machine learning models. 
Metrics indicate optimal performance is achieved when 
a balanced subset of features (50 per cent of the top 
features in this case) is implemented. This equilibrium 
permits the inclusion of sufficient informative data in 
the model while preventing the introduction of noise or 
overfitting that occurs with an excessive number of 
features. The experience of experiencing a decrease in 
model performance when 80% or all of the features were 
included should serve as a dismal reminder not to 
assume that greater data quality results in improved 
performance automatically. Frequently, the significance 
and calibre of the data surpass its mere volume. This 
analysis provides compelling support for utilizing 
feature reduction methodologies and meticulous feature 
selection to maximize the efficacy of machine learning 
models. 
It is important to note that the classification method used 
in this study is a single NN model. In order to make the 
system adaptive, a homogenous ensemble approach can 
be utilized. Each time a new threat is introduced, a model 
can be trained and added to the system. Adding or 
removing models from an ensemble model allows the 
system to be more dynamic. 
 
5. CONCLUSION 

The importance of the smart grid and the huge data 
generated by their sensors and devices lead to the urgency 
of new security frameworks and approaches. Therefore, 
this paper introduced a new framework that proposes 
distributed vulnerability detection where close grides are 
clustered to report their data to the nearest fog node. The 

paper also presented a deep-learning approach for real-
time attack detection. The proposed approach showed 
that more than 94% of the attacks can be detected using 
50% of the features, which indicates the proposed 
algorithm's efficiency in handling huge data with 
reasonable performance. The future work involves 
practically implementing the proposed framework on real 
smart grid networks. 
Although the results presented in this paper are good and 
with high-accuracy, there is still room for improvement. 
For instance, more deep learning algorithms could be 
used for attack detection. Also, due to the large number of 
features used, more feature reduction is required to 
reduce real-time processing and computation. 
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