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Abstract: In this paper, a semi-analytical technique known as the Method of Lines (MoL) with uniform and
non-uniform discretization schemes is developed. The aim is to determine static potential profilein planar elec-
tronic structures. Even though this method has been known for some time, there has been reported work on its
application to planar semiconductor device analysis for voltage profile determination. Since most current elec-
tronic devices are manufactured using planar and quasi-planar technology, the proposed algorithm is well suit-
ed for device analysis prior to fabrication. Compared with known popular methods such as Finite Difference and
Finite Elements methods, the proposed technique is relatively simple, more accurate and unlike other methods,
has no convergence problem. In addition to this, its semi-analytical nature, which consists of reducing one com-
puting dimension, allows saving significant memory and computation time. Typical planar electronic structures
are considered to demonstrate their suitability for these devices, and the obtained results are presented and dis-
cussed.

Keywords: Planar structure, Method of lines, Potential profile, MoL

Introduction

The most popular techniques used for numerical sim-

ulations of various electronic devices are the Finite
Difference and the Finite Element Methods (FDM and
FEM). Although, some other techniques, such as the
Boundary Integral and Monte Carlo methods have been
used in some cases, the two former methods are the most
widely used despite of some of their disadvantages.

The main drawbacks of these methods are long run-
ning time, large memory space requirements and conver-
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gence problems. In the present work, an alternative semi-
numerical approach is used for the simulation of electron-
ic planar devices. The approach is based on a mathemati-
cal method known as the Method of Lines (MoL) (Ames,
1977, Sadiku, et al. 2000; Vietzorreck, et al. 2000;
Barcz, et al. 2003; Vietzorreck, et al. 2004; Pascher, et al.
2005; Yan, et al. 2005; Gonzalo, et al. 2006; Plaza, et al.
2006 and Chen, et al. 2007) which is a differential-dif-
ference technique. It is a versatile technique devel oped by
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Figure 1. Equidistant discretization pattern using the method of lines

R. Pregla and co-workers for the analysis of planar
microwave structures (Schultz, 1980, Pregla and Pascher,
1989, Pregla, 2002). For agiven partial differential equa-
tion subject to some boundary conditions, all but one of
the independent variables are discretized. This alows
finding a one-dimensional analytical solution. The semi-
analytical nature of the MoL makes the computational
efforts much less intensive than the above-cited methods
applied so far to microwave structures. This method has
been used recently for the necessity of reducing long cal-
culation times and therefore to significantly reduce the
computation time (Zhou, et al. 2000; Pascher, et al. 2005;
Yan, et al. 2005; Gonzalo, et al. 2006; Plaza, et al. 2006
and Chen, et al. 2007). The method of lines has been used
by severa authors for the analysis of microwave struc-
tures in both quasi-static and full-wave modes (Schultz,
1980; Pregla and Pascher, 1989; Pregla, 2002; Barcz, et
al. 2003; Vietzorreck and Pascher, 2004 and Yan, et al.
2005). However, the method has not been extended to the
voltage profile determination of planar semiconductor
devices. In the following sections, the application of the
MoL to the analysis of planar structures will be demon-
strated based on a two-dimensional Poisson's equation.
Since the discretization schemes are important parameters
in the efficiency of the algorithm, the uniform and non-
uniform schemes will both be presented. Finally, some of
the obtained results for basic semiconductor planar struc-
tures will be depicted.

2. Technique of Analysis

Let us introduce the approach of the Method of Lines
based on solving the very popular Poisson's equation
given by Eq. (1) for the domain shown in Fig. 1.

82¢(x,y)+ 2%9(x,y) _
Ix? 8y2

)

f(xy)

If we uniformly discretize the variable x, then the func-
tions ¢(x ,y) and f(x y) in Eq. (1) are transformed into the

sets ¢(x;,y) and f(x,y) dong the lines x=i.h where
i=1,2,3...N.

N is the total number of lines within the structure and
h is the discretizing size interval as shown in Fig. 1.

This operation transforms Eq. (1) into a system of N
differential equations of the form:

&Zq) Xi, Y 82¢ Xi,Y
(}’(le . 8(y£ =16

If welet ¢(x;.y) = ¢i(y) and f(x;.y) = fi(y) then, theith
difference approximation on the discretized variable may
be written as:

2

| _ P90 (3.9)
IX|j h
and its second derivative may be written as:
M| _9
22| _ Xl oxiy _0g-20+0u (3b)
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If we express the vectors of functions @ and F as:

® = (¢r.0p, 0N ) (4.3)
and
F =(f1, f2,...,fN )t (4b)

then, Eq. (2) can be written in the following matrix
form:
2
minriz PO =F
dy h

(®)

where P is a second order differential operator, which
isan NxN tri-diagona matrix of the form:
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where p; and p, are determined by the left and right

boundaries of the structure of Fig. 1.
Since P is a real-symmetric and tri-diagona matrix,
The following two possible conditions on ¢, and ¢y,

may be met:

1. either ¢, and/or ¢,,, =0 where in this case
p, and/or p, =—2 (Dirichlet condition):

% Gl

and/or
0

p, =—1 (Neumann condition).

2. or =0 where p, and/or

N

there exists a nonsingular NxN matrix T such that the
matrix A given by:

_Tt
A=TPT @

is diagona and where the elements A; are the eigenval-

ues of P.

T isamatrix of the corresponding eigenvectors and Tt
isits transpose.

For a non-uniform discretization scheme, the approach
presented above has to be dightly modified.

Hence, the second derivative expressed by Eq. (3.b) for
the uniform discretization will now be expressed as given
below for the non-uniform case:
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Figure 2. Non-equidistant discretization pattern with
the method of lines

where ¢, = (h; + h;y) / 2 denotes the ith interval size
between the dotted lines shown in Fig. 2 and h; is the
non-uniform discretization interval.

The difference Eqg. (3.a) for the non-uniform case is
firstly normalized by multiplying both of its sides by

hy/h, /h and to get the relation:

hﬁ(%]ﬁhﬂ (-0 +n) ©

where h is an assumed normalized discretization interval.
Considering the Dirichlet-Dirichlet lateral boundary
conditions of the analyzed structure, which means ¢, =

On. = 0, EQ. (9) takes the following matrix form

hy ¢, = 1, Do (10)
where

I =diag[\/hE] ; i=01..N. (11)

i

0= (01 02, K, on ) 12)

and
t
N {3_‘1’ ool ] (13
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whereas the matrix D of dimension (N+1xN) is afirst
order difference operator given by:

1 0
-1 1
D= -1 . (14)
w1
0 -1

Similarly, the second order operator given by Eq.
(8) is normalized by multiplying both of its sides by

thefactor h,/e;/ h to get thefollowing expression:

i 2
h\ﬁﬂ _ |hfoe) 90 - i=12, ..N.
h 8x2i & | IXlj IXliy
(15)
which takes the matrix form:
-1, _ t
hre ¢xx—_reD¢x (16)
where
re=diag£\/E] . i=12 .N. 17
€
and
t
bo=| 28] 29 0% (18)
X T o2 52 "2
JX " JX 5 J X N
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and Dt is the transpose of D.
Inserting the expression of ¢, given by Eq. (10) into
Eq. (16) gives:

h2r, Yy, = - (re D', th Dr, )(re‘1¢) (19)
If welet
Dy =1,Dry (20)
and
Dy, =-D,!D, (1)
then Eq. (19) may be written as:
h2r, Y9, = Dy, re‘lo)) (22)

Inserting the expression of ¢,, from (19) into the sys-
tem given by Eq. (2) gives the following matrix form
d% 1

dy—2+h—2reDXX re_ (b): f

(23)

wheref isavector of functions obtained from discretiz-
ing f(x,y).

Multiplying both sides of Eq. (23) by I’e_1 yields:

2
dTl/2/+ hiz Dy =G (24)
where
Y =1 29
and
G=r1f (26)

Since D,, is atri-diagonal matrix, then the system
given by Eq. (24) needs to be decoupled before being
solved. Furthermore, since D,, is real-symmetric, there
exists an orthogonal matrix T such that the elements of the
diagonal matrix A are the eigenvalues of P.

T in this case, is aso the matrix of the corresponding
eigenvectors and Tt its transpose. Using the above result,
the system given by Eq. (24) is decoupled by pre-multi-
plying it by Tt and obtaining the following system:

2
ery) f? )+hi2(TtPT X )=T'c
y

(27)
or simply
4V 1ok 29)
dy2 h?
where

F=T!G (29)
and
V=Tl (30)

Assuming A, =—x,° then Eq. (28) is further
transformed into a set of N ordinary differentia

equations as
2 \2

Z—\Q—[%) Vi=F i=1.., N (31)
y

The general solution of each equation of the system
(31) takes the form:

Vi = A cosh(%jwr B sinh[%JerVpi (32)

where A; and B; are constants depending on the
horizontal side boundaries. The specific solution VPi is

expressed as a linear combination of the functions F;

and itslinearly independent derivatives F,™ as

Vpi =&, R +ail|=,(l)+a,-2 F,(2)+...+ &, F,(m) +.. (33)

where the coefficients a; are determined by substituting
V; of Eq. (31) by the above expression.

In the end, the vector of potentials ¢ is obtained from

V using the following expression:

o=, ¥=r, TV (34
which expresses analytically the solutions along the
discretization lines as a function of .

Based on the above algorithm, a computer program has
been developed for the simulation of semiconductor
devices to determine the potential distribution within pla-
nar structures. It includes the following steps:

1. Enter the structure geometry and the dimension of each
layer, the type of boundary conditions, the electric
charge profile as well as the discretization interval h.

2. Perform discretization by finding the total number of
lines and construct the second order operator P.

3. Determine the eigenvalues of the matrix P, the ele-
ments of A and the corresponding matrix of eigenvec-
tors T.

4. Find in the transformed domain the space charge den-
sity and homogeneous horizontal surface boundary
vectors by pre-multiplying by Tt

5. Compute the constants A; , B; by considering the field
and potential interface continuity conditions aswell as
the surface boundary conditions.

6. Perform the inverse transformation to find the analytic
solution in the original domain along each discretiza-
tion line.
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Figure 3. Cross sectional view of a two-layer planar semiconductor structure. (Dimensions are given in text)
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Figure 4. Potential profiles in the structure in Figure 3 with Neumann-Dirichlet, b) Dirichlet-Neumann,
c) Dirichlet-Dirichlet and d) Neumann-Neumann lateral boundary conditions

3. Case Studies

In this section, the developed algorithm is applied to
a set of typical planar structures used in current electron-

Using a uniform discretization scheme with an interval
sizeh=1 um resultsin atota of 30 intervals, the fol-
lowing lateral boundary conditions have been considered:

ics technology. The objective of the simulation isto deter- g) Nggr?]?nn-Di richlet

mine the potential profile throughout the structures having ) D! " Chl a—Nggrr;]?nn

different physical, geometrical and boundary conditions. ©) Dirichlet-Dirichlet
d) Neumann-Neumann

The effect of boundary conditions on the potential
profile has been first considered by finding the potential
profile throughout a two-layer planar structure as
shown in Fig. 3. The electrical, physical and
geometrical constants of this structure are: p, = 10
Clem®, p, = -2x 10™ Clem® V,=20V; g, = €, = 119
€0, L=30um; 1, =8 um; 1, = 10 um; H; =10 um; H, =
5 um and the value of €° is 8.85x10"* F/m.

The results showing the obtained potential profile con-
tours are depicted in Fig. 4.

With reference to this figure, one can observe that the
change in the potential profile is strongly related to the
boundary conditions. This is in accordance with most
practical situations where a boundary of a semiconductor
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Figure 6. Potential profiles for the structures of Figures 5-a and 5-b respectively

device is either forced to have a specified voltage or left
free.

After this, two-layer symmetrical structures shown in
Fig. 5 have been simulated. Note that in both structures
the layers near to the groundsides have a constant charge
density , whereas the charge profile throughout the second
layers varies linearly with y as p, = A(y-H,) + B. The
dimensions and the physical parameters for both struc-
turesare: p;=35x 1011 C/cm3; A=-103C/cm4B =
-101C/cm3; e=11.0¢,; L =30 um; H; =2.5 um; H, =
15 um; and V, = 20 V. For the structure 5-a, 1, =1, =
10 um and the boundary conditions are Dirichlet-
Dirichlet; whereas for the structure 5-b, 1; = 1, = 6 um
and the boundary conditions are Neumann-Neumann.

The analysis is carried out with 63 uniform intervals

for the device 5-a and 65 intervals for the device 5-b.
Figure 6 shows the simulation results of the obtained
potential profiles for both structures 5-a and 5-b.

Due to symmetry, only half of these structures need to
be simulated by considering the Neumann condition at the
axis of symmetry. It has been verified that the analytical
results are the same for all symmetric lines with respect to
the axis of symmetry. Hence, for symmetrical devicesthe
numerical effort can be significantly reduced by reducing
the simulated space and therefore, reducing the total num-
ber of lines by afactor of two.

A two-dimensional metal oxide semiconductor (MOS)
capacitor has been also simulated using the developed
algorithm. The structure consists of a metallic gate, a P-
type silicon substrate and an oxide film layer as shown in
Fig. 7.
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Figure 7. Two-dimensional model of the MOS capacitor used in the present analysis
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Figure 8. Three-dimensional representation of the potential distribution in the device of Figure 7

Because of the presence of a layer of silicon dioxide
layer (which isadielectric material) between the gate and
the substrate, this device exhibits the properties of a
capacitor. It is assumed in this analysis that the metal and
the semiconductor work functions are equal, and that there
is no electric field either within the oxide or at the oxide-
silicon interface. Hence, the electric field is supposed to
be zero whenever the applied voltage is zero.

Since the two-dimensional model of the considered
deviceis symmetric, the investigation is limited to the left
part of the device asillustrated in Fig. 7. When a positive
voltage is applied at the electrode, free majority carriers
(holes) are repelled by the induced electric field.
Equilibrium condition requires that the potential is zero at
the self-adjusting boundaries of the resulting fully-deplet-
ed layer and elsawhere in the neutral region. The lateral
boundary conditions of the silicon and oxide layers are of
Neumann type.

The discretization pattern is formed by 10 concentrat-

ed equidistant lines crossing the curved area and 31 large-
ly spaced lines elsewhere. The space charge layer is sub-
divided into 10 sub-layers to perform a stair-step approx-
imation on the curved boundary. The dimensions used are:
L=35 um; =17 um; 0.1 <X, <5.0 um; 30 < X, < 50
um; 1014 < Ny < 1018 cm3; 10 < Vg < 100 (Vg <
Vbreakdown )

The program has been executed for different X, and
N, and the results obtained are shown in Fig. 8. The
results shown in this figure agree with both the previous-
ly stated boundaries and, the physical requirements. An
important observation isthat considering only a part of the
neutral region can till save alot of numerical efforts. This
is because the potential within the whole neutral regionis
zero. Thislast point is particularly important when the left
lateral side is far from the space charge region boundary,
and consequently, the number of discretization lines can
also be reduced.
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4. Conclusions

The Method of Lines (MoL) is an efficient numerical
tool for solving partial differential equations. Its strength
lies in its assured convergence and its semi-analytical
nature for both uniform and non-uniform discretization
schemes. As it appears from the analysis done in this
work, the MoL can be applied to electronic devicesto find
static potential profiles for different structures. A direct
application of the MoL is to determine the breakdown
voltages of power electronic devices needed for design
prior to manufacturing. The developed agorithm allows
significant saving in memory storage and computation
time with assured convergence. This facilitates its exten-
sion to more sophisticated electronic structures aswell as
its integration into current computer-aided design tools.
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