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Abstract: Texture is an important visual property that characterizes a wide range of natural and artificial
images which makes it a useful feature for retrieving images. Several approaches have been proposed to
describe the texture contents of an image. In early research works, such as edge histograms-based tech-
niques and co-occurrence-based approaches, texture descriptors were mainly extracted from the spatial
domain. Later on, dual spaces (transform of spatial domain) such as frequency space or spaces resulting
from Gabor or wavelet transforms were explored for texture characterization. Recent physiological stud-
ies showed that human visual system can be modeled as a set of independent channels of various orien-
tations and scales, this finding motivated the proliferation of multi-resolution methods for describing tex-
ture images. Most of these methods are either wavelet-based or Gabor-based. This paper summarizes our
recent study of the use of Fourier-based techniques for characterizing image textures. At first, a single-
resolution Fourier-based technique is proposed and its performance is compared against the performance
of some classical Fourier-based methods. The proposed technique is then extended into a multi-resolu-
tion version. Performance of the modified technique is compared against those of the single-resolution
approach and some other multi-resolution approaches recently described in literature. Two performance
indicators were used in this comparison: retrieval accuracy and execution time of the techniques. 

Keywords: Fourier  Transform, Texture-based image Retrieval, Gabor filters, Wavelet transform, Multi-
resolution approach
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1.  Introduction

Content-Based Image Retrieval (CBIR) has been an
active research topic in the last two decades. As a con-
sequence, several experimental and commercial image
retrieval systems have been proposed during this peri-
od of time. In a CBIR system, image databases are
queried using the visual content of an image which is
usually represented by low level features such as color,
texture, shapes, or a combination of some or all of
these features.

Texture is widely used in CBIR systems since it
plays a crucial role in characterizing real world images
both natural (such as images of clouds, water, trees,
remotely sensed data and medical images) and man-
made ones (such as images of bricks, fabrics, and
buildings ).

Several approaches have been proposed to describe
texture contents of an image. In early works, texture
features were mainly extracted from the pixel space
itself using edge density, edge histograms, and co-
occurrence-based-features to characterize the image
texture (Haralick et al. 1973; Conners and Harlow,
1980; Amadasun and King, 1989 and Fountain and
Tan, 1998).    More recently, various transforms have
been used to produce dual spaces from which texture
features were extracted. The most common transforms
are Fourier (Tsai and Tseng, 1999; Weszka et al. 1976
and Gibson and Gaydecki, 1995),  wavelet  (Smith and
S-F, 1994; Kokare et al. 2007; Huang and Dai, 2003;
Huang and Dai, 2004 and Huang et al. 2006)  and
Gabor transforms  (Daugman and Kammen, 1987; Jain
and Farrokknia, 1991 and Bianconi and Fernandez,
2007).  Moreover, recent studies showed that human
visual system can be modeled as a set of independent
channels of various orientations and scales (Beck et al.
1987),  this finding motivated the proliferation of
multi-resolution methods for describing texture
images. Most of these methods are either wavelet-
based or Gabor-based. While the use of Gabor filters is
supported by physiological evidences (Beck et al.
1987),   it suffers from serious drawbacks such as the
need to tune the parameters of the filter and the com-
plexity of the calculations involved  (Bianconi and
Fernandez, 2007). In the other hand, wavelet-based
approaches are much simpler and faster. As a conse-
quence, wavelet-based approaches gained much more
popularity among the computer vision community.
Fourier transform has also been widely used in charac-
terizing textures. One of the reasons for its popularity
is its suitability for describing periodic functions; and
it's known that texture images usually contain quasi-
repetitive patterns. Concentrations of Fourier power
spectrum values capture dominant orientations of the
patterns in the image and their distribution in the fre-
quency  space  is closely related to  coarseness  of the 

texture (Tsai and Tseng, 1999 and Weszka and Dyer,
1976).  These two features (directionality and coarse-
ness of a texture) are of importance in texture analysis
(Campbell and Robson, 1968). The main drawback of
using Fourier transform is the poor spatial localization
it provides. Windowed Fourier transform has been
introduced to overcome this problem at the cost of a
significant increase in computations (Yu et al. 2002).
This paper proposes a new single-resolution Fourier-
based technique for characterizing texture images and
compares its performance against those of some clas-
sical Fourier-based techniques. It also describes a
multi-resolution version of the technique and evalu-
ates its performance in comparison with those of sev-
eral other multi-resolution techniques recently
described in literature. The two main performance
indicators that are used in this comparison are the
accuracy and execution time of the techniques. 

2.  Summary of the Techniques Considered 
in this Research Study

This study includes key Fourier-based techniques,
and some recent multi-resolution approaches (mainly
Gabor- and wavelet-based ones) described in litera-
ture.

2.1  Fourier-based Techniques
Fourier transform has been widely used by image

processing research community. It has the very useful
property of highlighting the dominant spatial frequen-
cies as well as the dominant orientations of the struc-
tures contained in the image. Another advantage of
using Fourier transform is the fact that frequency-
domain features are generally less sensitive to noise
than spatial domain features (Tsai and Tseng, 1990).

Weszka and Dyer, 1976  partitioned the spectral
domain into ring-shaped and wedge-shaped areas.
Variance values of the Fourier power spectrum of ring-
shaped regions and wedge-shaped regions were used
to describe the coarseness and the directionality of the
texture respectively

D. Tsai and C. Tseng, 1999  proposed the use of
average energy (power spectrum) of 4 co-centric areas
as feature descriptor for roughness of cast surfaces.
Bayes and neural network classifiers were evaluated.
The authors reported 100% classification accuracy rate
on cast specimens containing nine roughness classes.

D. Gibson and P.A. Gaydecki, 1995 used the
Fourier moduli to classify histological images. They
conducted an experiment in which they compared their
technique with the Co-occurrence matrix based
approach proposed by (Haralick et al. 1973).  They
concluded that the two approaches worked with
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approximately equal success but the Fourier based one
was much faster.

Yu et al.  2002  applied a local Fourier transform to
the image and used first and second moments as tex-
ture features. The local Fourier transform consisted of
applying eight 3x3 templates approximating the
Fourier transform of the 3x3 window resulting in 8
transformed images for which the first and second
moments were calculated to describe the texture con-
tent of the image. The authors compared their tech-
nique with some other related works (Color moments,
Color correlogram) on an image database of 10000
images using 200 queries. They reported the suprema-
cy of Color Texture Moments-based method.

2.2  Wavelet-based Techniques
Interest of computer vision community shifted to

wavelet-based approaches when several physiological
studies of the visual cortex suggested the use of multi-
scale analysis of the visual information by Visual
Systems of primates. Beck et al.1987 for example,
found that the visual cortex can be modeled as a set of
independent channels, each with a specific frequency
and direction. 

Smith and Chang, 1994 proposed a method for clas-
sification and discrimination of texture based on ener-
gies of image sub-bands. They compared four image
decompositions (5-level pyramidal wavelet decompo-
sition, 4x4 uniform sub-band decomposition of the
Fourier transform, 4x4 DCT sub-bands and a simple
spatial partition of the image into 4x4 blocks). Each
sub-band was then represented by its mean and stan-
dard deviation. They found that Wavelet-based decom-
position and Fourier techniques produced the best
results and the spatial partition had the worst retrieval
performance.

M. Kokare et al. 2007; Kokare et al. 2005 and
Kokare et al. 2006  proposed a set of 2-D rotated fil-
ters to which a 5-level discrete wavelet transform was
applied.  Each sub-band was represented by its energy
and standard deviation. Their approach produced a
good characterization of diagonally oriented texture.
They reported about 8% improvement of the retrieval
rate compared with traditional Wavelet Transforms. 

Recently, (Huang et al. 2003; Huang and Dai, 2004
and Huang et al. 2006)  proposed a wavelet based
approach that concatenates gradient vectors of the sub-
band images to obtain a single feature vector called
Composite Sub-band Gradient (CSG) vector. A gradi-
ent vector of an image is the histogram that records the
total gradient magnitude of the image pixels at differ-
ent directions. Their experiments showed that their
approach outperformed the single-resolution tech-
nique using the same texture features. Some other
recent works (Wang and Yong, 2008 and Huang and
Avlyente 2008)  took into account the correlations that

exist between different sub-bands when selecting the
texture features. 

Wang and Yong, 2008  identified the most correlat-
ed sub-bands and used a linear regression to estimate
the relationship between these sub-bands. Their fea-
ture vector consisted of the linear regression parame-
ters (ai, bi) of correlated sub-bands as well as the
means and standard deviations of the linear approxi-
mation errors. Their technique produced better per-
formance than classical methods such as pyramid
structured wavelet transform, tree structured wavelet
transform and Gabor, and combination of these meth-
ods with GLCM (grayscale concurrence matrix) on a
dataset made of 40 Brodatz images. 

K. Huang and S. Aviyente, 2008  used the correla-
tion information to cluster the image sub-bands. The
energy of the highest sub-band in each cluster was
considered as texture feature. Their method performed
an effective selection of sub-bands since there was no
loss of accuracy compared with the one obtained with
the full set of sub-bands.

Z-He et al. 2009  presented a novel wavelet-based
method which used non-separable wavelet filters.
They claimed that their approach can capture more
directions and edge information which leaded to better
retrieval accuracy.

Recently, complex wavelets transform became a
popular tool for texture characterization. This is
because of its shift invariance property and its good
directional selectivity over the traditional discrete
wavelet transforms  (Kokare et al. 2006; Selesnick,
2002, Celik and Tjahjadi, 2009 and Vo and Oraintara,
2009). 

M. Kokare et al. 2005  proposed new 2D Rotated
Complex Wavelet Filters that are non-separable; they
are 45 degree rotated version of the Complex Wavelet
Filters proposed by Selesnick, 2002.  The authors con-
ducted experiments on two sets of images (116x16 and
40x16) and reported an improvement in accuracy com-
pared to traditional wavelets and Gabor-based method
especially when combining the new filters with the
dual tree complex wavelet transform since this combi-
nation allowed characterization of 12 directions
instead of three by traditional real wavelets, and six in
most Gabor wavelets and complex wavelets tech-
niques 

Celik and Tjahjadi, 2009  described a multi-scale
texture retrieval classifier that used a Gabor-like func-
tion and dual-tree complex wavelet transform with 3
scales and 6 directions. The texture feature vector con-
sisted of the variances and entropies of the sub-bands
resulting from the transform. Their experiments on 24
texture images (six from Brodatz album and six from
the MIT VisTex database) showed that the new
approach outperforms the traditional discrete wavelet
transform and is also robust against noise. 
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3.  Proposed Methods

The proposed single-resolution method is partly
inspired from previous energy-based works (Tsai and
Tseng, 1999 and Weszka and Dyer, 1976). Like those
methods a discrete Fourier-transform is first applied to
the original image f(x,y) to obtain the transformed
image F(u,v). The discrete 2-D Fourier transform
F(u,v) of an MxN image f(x,y) is given by the follow-
ing Eq. (1): 

(1)

Like those approaches also, the frequency domain
is partitioned into several regions. The difference with
those works is that sectors are used instead of rings
and wedges, where a sector is the intersection of a
wedge and a ring; see Fig. 1.  The advantage of using
sectors is the fact that a more accurate description of
the power spectrum distribution in the frequency
domain can be obtained. Each sector characterizes a
range of orientations and some levels of coarseness of
the texture. Moreover, unlike the above mentioned
works, the proposed approach takes advantage of the
symmetry property of Fourier transform and limited
the analysis to only half of the frequency space which
reduces the overall processing time. 

Let {f(x,y), x=1,n , y=1,n} be the texture image and
{F(u,v), u=1,n, v=1,n} be its Fourier transform. First,

the origin of the transformed image is shifted to the
center of the image at position (n/2+1, n/2+1). This
will produce a symmetrical Fourier image. Because of

this symmetry, only half of the image is processed to
extract texture features. In this implementation the
right half of the image is considered; it's defined by
Eq. (2): 

(2)

The spectral domain is partitioned into half-ring-
shaped regions and wedge-shaped regions where:

A half-ring-shaped region Rr1,r2 is defined as fol-
lows (3):

(3)
A wedge-shaped region is defined as follows (4)

(4)
The intersections of these rings and wedges define

sectors Sr1,r2 1,2 , as shown in formula (5)

In order to reduce the effect of noise, only the sig-
nificant values of the power spectrum are considered
for further processing. 

The mean and standard deviations of the significant
values of power spectrum in these sectors constitute
the feature vector.

Such a feature vector describes three aspects of the
texture: its roughness, coarseness and directionality.
As for texture roughness, (Gibson and Gaydecki,
1995)  indicated that rough textures tend to contain
more energy in the high frequency components than
smoother ones. Regarding texture coarseness, (Tsai
and Tseng, 1999)  indicated that magnitude of power
spectra for frequency components away from the ori-
gin drop rapidly to approximately zero for coarse tex-
tures. Finally, it is 0- well known that linear structures
in the spatial domain at direction produce linear
structures in the frequency domain with high energy
values at direction  +90°. 

3.1  Feature Extraction Algorithm (Single-reso-
lution)

The feature extraction algorithm used in the single-
resolution method can be summarized as follows:

1. Apply Fast Fourier transform to original image
f(x,y) to get F(u,v) (ie. F(u,v)=FFT(f(x,y), where
FFT = Fast Fourier Transform)

2. Consider only pixels with significant power spec-
trum values (ie. F(u,v)=0 if F(u,v)< Threshold)

3. Partition the Fourier image into n sectors (ie. con-

Figure 1.  The right  half  of the frequency domain
is partitioned into 12 sectors each repre-
senting a specific direction and frequen-
cy range.  Note how  “vertical”   wedges
(1, 5 and 9)  are each made of  two 22.5o

wide wedges

(5)
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sider only (u,v) satisfying formula (5))
4. Calculate means ( i) and standard deviations ( i)

of the n sectors. The feature vector is defined as
follows:

FV= ( 1,  1 2,  2,…  n,  n).

Few local multi-resolution Fourier-based methods
were proposed for texture analysis. They have mainly
applied windowed Fourier transform of different sizes
(resolutions) to the original image and extracted tex-
tural features from those transformed images. The pro-
posed technique adopts a global multi-resolution
approach in the sense it applies Fourier transform to
images of different sizes and the textural features are
extracted from the various transformed images.
Therefore, the new multi-resolution method is just an
extension of the single-resolution method with few
adjustments introduced to prevent any significant
deterioration of the processing time. Experiments we
have conducted showed that the use of mean value
alone instead of mean and standard deviation as a dis-
criminating feature does not deteriorate the retrieval
performance and it slightly improves the processing
time. They also showed that the use of sectors for
multi-resolution approach does not improve signifi-
cantly the performance as when wedges and rings are
used but it slightly increases the processing time.
Taking into account these two results, the following
feature extraction algorithm for our multi-resolution
method is adopted.

3.2  Feature Extraction Algorithm (Multi-reso-
lution)

The Feature Extraction Algorithm can be summa-
rized as follows
1. Apply Fast Fourier transform to original image

f0(x,y) to get F0(u,v)(i.e. F0(u,v)=FFT(f0(x,y))
2. Set Resolution level k to 0;
3. while k < MAX_LEVEL do

a. Consider only pixels with significant power spec-
trum values  (ie. F(u,v)=0 if F(u,v)< threshold).

b. Calculate Rk, cumulated energies (means) of the
right half ring-shaped regions and normalize them
(ie.  Rk= (r1, r2, …rn), where ri= normalized sum of
energies for ring-shaped region i).

c. Calculate Wk, cumulated energies (means) of right
wedge-shaped regions and normalize them  (ie.
Wk= (w1,w2,..wm), where wi=normalized sum of
energies for wedge-shaped region i). The feature
vector for level k is therefore defined as
FVk=(Rk,Wk).

d. Calculate the next resolution image by halving
image sizes and applying an interpolation tech-
nique on pixel values (nearest, bilinear, or bi-
cubic).

e. k=k+1.
4. The feature vector FV is defined as: FV=(FV1,

FV2,…FVL), where L is the maximum number of
scales considered. 

3.3  Similarity Measurement
Given two k-dimensional feature vectors f1 and f2,

representing two images Im1 and Im2, the dissimilari-
ty between Im1 and Im2 can be estimated using vari-
ous distance metrics. The simplest and most popular
one is the Euclidean distance. This metric assumes all
the components of the feature vector are of the same
level of magnitude which is not the case for the feature
vectors of the proposed techniques. Lower resolution
images have low energies. A normalized metric that
reduces the bias towards high-magnitude components
is needed.  Few of such metrics were tested; the fol-
lowing two were selected because of the good retrieval
results they produced (formula 6 and 7):

(6)

This metric is known in literature as Caneberra met-
ric; it is used to compare feature vectors produced by
the single-resolution technique.

(7)

The metric defined by Eq. (7) is used to compare
feature vectors produced by the multi-resolution tech-
nique because the experiments we have conducted
showed that the use of this metric leads to a slightly
better results than when Caneberra metric is used.

4.  Experimentation

4.1  Parameter Setting
In our experimentation the Fourier domain of an

NxN image is partitioned into three half ring-shaped
regions Rr1,r2 (nRings=3) and four1 wedge-shaped
regions W 1, 2 (nWedges=4 ) where
{(r1,r2)}={(0,N/6),(N/6,N/3),(N/3,N/2)}and 
{( 1, 2)}={(-22.5°,22.5°),(22.5°,67.5°),(-22.5°,-
67.5°), (67.5°, 90°), (-67.5°, -90°)}.

This choice is driven by the results of the prelimi-
nary testing involving different values for nRings and
nWedges. The experiments showed that beyond 6
wedges and four rings results start degrading and the
best results are obtained when (nRings= 3 or 4 and
nWedges=4 or 6). The setting producing smaller fea-
ture vector is chosen in order to ensure a  faster execu
__________________
1 The four wedge-shaped regions are WR0 that spans the range (-22.5o,
22.5o), WR1 that spans the range(22.5o, 67.5o), WR2 that spans the range
(22,5o, -67.5o), and WR4 that spans the two rabge (67.5o, 90o), and (-67.5o,
-90o)
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tion time. The three half-ring-shaped regions segment
the Fourier domain into low, medium and high fre-
quencies; their power spectrums are strongly related to
roughness and coarseness of the texture. In the other
hand, the power spectrums of the four wedge-shaped
regions are closely related to the amount of the linear
structures in the four directions: horizontal, vertical
and the two diagonals.

Therefore, the feature vector of the single-resolu-
tion approach consists of 24 elements containing the
mean and standard deviations of the twelve sectors
Sr1,r2, 1, 2 shown in Fig. 1 and the feature vector of the
multi-resolution approach consists of 7xL elements
containing the means of the three half-rings and the
four wedges of the L images representing L resolu-
tions. See Fig. 2.    The value of the threshold defining

significant power spectrum values is set to the mean of
the values of the transformed image by FFT. The
experiments showed that this value gives good results
with all the images that have been tested. 

4.2  Test Dataset
The dataset used in the experiments is made of 79

grayscale images selected from the Brodatz album we
downloaded from:
[http://www.ux.uis.no/~tranden/brodatz.html].

Images that have uniform textures (ie. similar tex-
ture over the whole image) were selected. All the
images are of size 640 x 640 pixels. Each image is par-
titioned into 8x8 non-overlapping sub-images from

which 4 sub-images are chosen to constitute the image
database (ie. database= 316 images) and one to be
used as a query image (ie. 79 query images).

4.3  Hardware and Software Environment
We have conducted all the experiments on an Intel

Core 2 (2GHz) Laptop with 1 GB RAM. The software
environment consists of MS Windows XP profession-
al and Matlab7. 

4.4  Performance Evaluation
To evaluate the performance of the proposed

approaches, we have adopted the well-known efficacy
formula (8) introduced by Kankahalli et al. 1996.

(8)

Where 
n is the number of relevant images retrieved by the

CBIR system, N is the total number of relevant images
that are stored in the database, and T is the number of
images displayed on the screen as a response to the
query.

In the experimentation that has been conducted
N=4, and T=10 which means Efficacy=n/4; 

The average time needed to perform feature extrac-
tion and compare two images is also recorded.  It's the
average time needed for comparing each of the 79
query images with 316 images in the database. This
value is used as a performance indicator of the speed
of the methods under investigation.

The first set of experiments is designed to compare
the results obtained by the proposed single-resolution
method with two classical single resolution Fourier-
based techniques. The purpose of this experiment is to
show the improvement obtained by adopting a sector-
based segmentation of the frequency domain over the
classical ring/wedge-based segmentation.  

Both of the Fourier-based methods partition the
Fourier space into 4 wedges and 3 rings. The first one
(referred to as CF(µ)) uses mean of the power spec-
trum of the resulting regions as texture feature. The
second one (referred to as CF( )) uses standard devia-
tion of the power spectrum of the resulting regions as
texture feature. The third one (referred to as CF(µ, ))
uses both the mean and standard deviations as texture
feature.

The second set of experiments was designed to test
the performance of the new multi-resolution method.
The first experiment is designed to evaluate the effect
of the type of interpolation technique (nearest, bilinear
and bi-cubic) on both the accuracy and execution time
of the proposed method. The second experiment is
designed to compare the performance of the multi-res-

Low frequency ring-shaped area
Mid-range frequency ring-shaped area
High frequency ring

Horizontal (0o) wedge-shaped region
Vertical (90o) wedge-shaped region (=2 areas)
Diagonal (+45, -45) wedge-shaped regions

Figure 2. The seven regions (3 rings and 4 wedges)
considered  for  each  resolution  level in 
the  frequency  domain and their signifi-
cance (multi-resolution approach)
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olution approach (referred to as MRFFT) with the sin-
gle-resolution one (referred to as SRFFT) and obtained
five other multi-resolution methods. These methods
are: Dual-Tree Complex Wavelet using means and
standard deviations of the sub-bands similar to the one
described in (Celik and Tjahjadi, 2009)  (referred to as
DTCW(µ, )), Rotated Wavelet Filters proposed by
(Kokare et al. 2007)  (referred to RWF (µ, )), tradi-
tional Gabor Filters using means and standard devia-
tions of the different sub-bands as described in Zhang
et al. 2000 (referred to as Gabor (µ, )), 3-level
wavelet-based method using energy of sub-bands as
feature descriptor similar to the one proposed by
(Wouwer et al. 1999)  (referred to as MRWEDb4) and
CSG Method similar to the one proposed by (Huang et
al. 2006)  (referred to as CSGDb10).

5.  Results and Discussion

Table.1 summarizes the results of the first set of
experiments designed to evaluate our single-resolution
method. The table shows that the proposed method
outperforms the classical Fourier methods in terms of
accuracy. (There is between 4% and 14% improve-
ment). This can be explained by the fact that partition-
ing frequency domain into sectors describes more
accurately the distribution of the power spectrum in
the Fourier space than when using rings and wedges.
The table also indicates that this gain in accuracy is
obtained at the expense of an increase in processing
time required to build and compare the twelve-ele-
ment-vectors of the new method (there is about 43%
increase in processing time). But it is worth noting that
the extra time is not exorbitant since the total time is
still less than many current retrieval techniques (as
shown in table 3). 

CF(µ) = classic Fourier method using mean
CF( ) = classic Fourier method using standard devi-

ation
CF((µ, )= classic  Fourier  method  using  mean  and 

standard deviation
SRFFT = Our  single-resolution   technique  using  µ 

and of sectors

Table. 2 summarizes the results obtained in the
experiment designed to identify the most appropriate

interpolation technique to be used by our multi-resolu-
tion method. As expected the nearest interpolation
technique is the fastest among the three approaches;
but with 80% accuracy it is far behind the two other
techniques. Bilinear interpolation technique is the best
in terms of accuracy (95%) and it requires less execu-
tion time than the bi-cubic technique (about 10%
faster). For these reasons bilinear interpolation was
used in the proposed multi-resolution technique. 

Table. 3, indicates that the use of a multi-resolution
approach improves the retrieval performance by 2%
(from 93% to 95%) when compared to the single res-
olution approach; the price to pay for better perform-
ance is an increase in the processing time (about 73%
increase), though the new time is still reasonable.

Table. 3 also shows clearly that, in terms of retrieval
accuracy, the proposed multi-resolution method out-
performs similar multi-resolution wavelet-based meth-
ods described in literature namely Pyramidal Wavelet-
based method (MRWEDb4), Composite Sub-band
Gradient method (CSGDb4), and Rotated Wavelet
Filters (RWF(µ, )). With 95% accuracy, the new
multi-resolution method is as good as the two other
methods (ie. DTCW (µ, ) and Gabor (µ, )) but with
a better execution time (classical Gabor(µ, ) is 12
times slower and DTCW(µ, ) 56% slower).

The best in terms of processing time is the classical
Wavelet-based technique (2 times faster than the pro-
posed method) but with lower efficacy rate.

Figure 3 shows the first 10 retrieved images obtained
by our single-resolution method and the three classical
Fourier methods, for the query sub-image D96-6.
Figure 4 shows the retrieval results for the same query
image obtained by our multi-resolution method and
four other techniques (namely DTCW (µ, ), Gabor
(µ, ), RWF and CSGDb10).

Table.1: Comparing our single resolution tech-
nique with two classical Fourier meth-
ods

Table 2.  Effect  of   interpolation   technique   on
accuracy and time of MRFT*

Table 3.  Comparing   performance  of  our  multi-
resolution method and some other multi-
resolution techniques
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Figure 3.  Retrieval results for our single resolution method and three versions of the classical.  Retrieved
images are sorted by decreasing value of similarity score from left to right and top to bottom
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Figure 4.  Retrieval results for  our  multi-resolution  method  and four  other techniques included  in the 
experimentation.  Retrieval images are sorted by decreasing  value of similarity score from left
to right and top to bottom
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6.  Conclusion and Future Work

This paper describes a new single-resolution Fourier-
based method for retrieving texture images. The exper-
iment that has been conducted shows that the new
method outperforms several existing Fourier-based
methods. It also describes a multi-resolution version of
this method that produces better retrieval results than
the single resolution approach at the expense of some
additional processing time. The multi-resolution
method outperforms several existing multi-resolution
methods. Currently, two possible improvements to the
proposed technique are under investigation:

a. Studying needed modifications for making pro-
posed methods rotation-invariant and

b. Exploring ways to perform image segmentation
based on the Fourier features used by the proposed
methods. 
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