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Abstract: This paper demonstrates the assessm ent of the small-signal stability of a single-machine infi-
nite-bus power system under widely varying loading conditions using the concept of synchromzing and
damping torques coefficients. The coefficients are calculated from the time responses of the rotor angle,
speed, and torgue of the synchronous generstor Tluee adaptive computation algorthms including
Ksalman filtering, Adaling, and recursive least squares have been compared to estunate the synchromz-
ng and demping torque coefficients The steady-state performance of the three adaphve techmigques i3
compared with the convenhonal static least squares technigque by conducting computer simulabions at dif-
ferent loading conditions. The algonthms are comparsd to each other in term s of speed of convergence
and accuracy. The recursive least sguares estimation offers several adventages including sgnificant
reduction i computing time and computationsl complexity The tendency of an unsupplemented static
exciter to degrade the system damping for medivm and heavy loading 15 verified. Consequently, a power
system stamlizer whose peremeters are adjusted to compensate for veriations in the system loading is
desipned using phase compensation method The effectiveness of the stabilizer in ephancing the dynam-
ic stability over wide range of operating conditions 15 venfied through the caleulation of the synchromz-
ing and damping torgue coefficients using recursive least sguare techmogue.
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1. Introduction

Amell -signal stabality analysis is concernad m the
behevior of power systems under small perturbahons
Its main objective 15 to assess the low-frequency oscil-
lations (LFO) resulting from poorly damped rotor
ogcillations. The most crtical types of these oscilla-
tions are the local-mode, which occurs between one
machine and the rest of the system, and the interarea-
mode oscillations that ooours between interconnected
machines (Fobers 2000; Yu, 1983, Abdel-IMagd and
Awift 1976 and Hsu and Chen 1987). Stabality assess-
ment of these oscillations 15 & vital concern and essen-
tial for sécure power system operstion and control For
secure power system operation, the operators need fast
and efficient computetional tools to allow online sta-
bility assessment. This paper 15 concerned 1n stabality
assessment of local mode oscillations.

Inreality, power system operating conditions change
with time These operating condihons affect the stahil-
ity of the synchronous machine. Therefore, 8 small-
signal stabality analysis must be repeatedly conducted
in gystem operation and control to provide estimates of
stability indices on basis of the gven data that are
obtained by either measurem ents or computer simula-
tion, and provide new estumates as new data are
received,

Traditionally, small-signal stability analysss are car-
red out in frequency domain using modal analysis
method This method implies estim ation of the charac-
tenistic modes of a lineanzed model of the system It
recrares first load flow enalysis, lineanzation of the
power system around the operating pount, developing
a state-space model of the power system, then com put-
ing the eigenvalues, eigenvectors, and perberpation
factors (Hsu and Chen 1987). Although eigenvalue
analysis 1 powerful, howewver, 1t 18 not swtable for
online application m power system operation, as it
requites significantly large computationsl effosts
Alternative method based on electromagnetic torque
deviation has been developed. Torgue deviation can be
decomposed into synchronizing and damping torques
(Demello end Concordia, 1269 deOliverss 1904 and
Alden and Shaltout 1979). The synchromzing and
dam ping torgques are usually expressed in terms of the
torgque coefficients K, and K; These coefficients can

be calculated repeatedly and can be used to identify
the specific electromechamcal modes A& that provides
the largest contribution to the LFO. Once the poorly
damped or even undamped mode 15 1dentified, then the
parameters of & conventional power system stabilizer
(P33) can be tuned vsng conventional phase compen-
sation to enhance the dynamic stability of the power
system.

A time-dom sin method based on least squares (L3)
mimmization techmigue has been applied to compute

K, and K for a single-machine-infinite-bus (SMIB)

system (Alden and Shaltout 1979) The L3 technigue
requures the time responses of the changes in rotor
angle Aft), rotor speed Aayt), and electrom agnetic
torque AT,(t) These responses cen be obtaned by

offling computer simulafion or onling measuwed data
The significance of this method is that it permits the
calculation of the torgue coefficients for a machine of
any degree of complexity and tekes into consideration
the effect of all system parameters and variables with-
out the need for modeling assumption. This method
has been extended to multmachine power systems
(Bhaltout and Feilat, 1992) The vanations of K, and

E; over wide renge of loading conditions were relat-

ed to the movement of the low-frequency electro-
mechamcal moda{Alden and |Shaltout, 1970 Shaltout
and Feilat, 1992 and 3haltowt and Feilat, 1993). The
LS static estmation technigque, however, 1s ime con-
sming as it requires monitoring of the entire period of
oscilletion

Anartificial neural network (ANN) based technigue
was proposed in (Feilat ef al, 1997) for online estma-
tion of K; and K; A static back propagaton neural

network (BPNN) has been used to associate the real
and reactive power (P-{J) patterns with K and K

Although the BPNHN has very good learmung ability,
but it suffers from some drawbacks such as long
offline travmng and the difficulty in determining the
appropriste number of hidden layers and hidden new
rons. G enetic algorithm (GA) and particle S3wam opti-
mzation (PA0) techinigques wete used for optimal eshi-
mation of K, and K; (El-Naggar and Al-Othman,
2004 end Al-Othman and El-Nagger, 2005). Another
online approach besed on generalized least square
{GL3) and robust fitting with bisquars weights has
been proposed to estimate the synclromzing and
dampming torque coefficients (Ghesem: and Ceafiizares,
2006), Although the above techiigques have demon-
strated their effectivenessin accurate estimation of the
torgue coefficients, however it is helieved thet their
computational burden prevents itz real-ime imple-
mentation

To avoid the computationsl burden, alternative meth-
odsbaged on adaphve estim ation technigques have been
developed These techniques have the mert of quick
stability assessment of the LFO on the basis of data
samples obtained by measurements It can also auto-
matically provide new estumates as new data samples
are received

A Kalman filter (EF), based approach was introduced
in (Fedat et al, 1999} to overcome the drawbacks of
the L5 by esimating K, and K recursively Kalman

filter as an estimetor 13 widely known to be optunal
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under state-space zepresentation It has been exten-
avely used in oumerous applicabions (Adly et al
1284y, Howewver, the computational burden of KF and
the requirement of complete prior knowledge of the
state-space representation and its parameters make its
real-time implementation mefficient This practical
difficulty motivated the development of other adaptive
filters like Adaline and recursive least squares (RLE)
An adaptive filter techmoue was developed in (Feilat
2007} based on least mean sguares (LME) algorithm
which 15 optimal 1 the least squaeres sense to track
changes in the optimal solution ansing as each new
data point becomes available The LM3 slgorithm is
dertved from least spuares techmque using steepest
descent rule and implemented using single adaptive
linear newral network (Adaline) The Adsline was
introduced 1n (Dash ef wl. 1998} as a powerful her-
momes tracking techmigue. The Adaline 15 simple both
in concept and im plementation However, Adaline suf-
fers from main weakmesses such as slow and general-
ly non-unifonm convergence and dependency on inetial
conditions.
In efforts to overcome the drawbacks of Adaline
and KF, anather adaptive technigue for fast online esh-
mation of K, and K; using a recursive least squares

(FL3) algorithm is presented in this paper. In general,
ELS slgonthm was employed extensively in parame-
ter estimation and system identification problems
(Haykin 1996 and Clarkson 1093). The main advan-
tage of the RL3 over Adaline lays in faster conwver-
gence and lower steady-state ecror properhies, which
are esgential for online application Moreover, the
algonithm 15 simpler than KF in terms of the knowl-
edge of covartance matrices Hestdes, 1t dozs not need
a dynamic model for time-varying parameters. Tlus
coupled with lower computabional costs, makes RL3
a1 attractive altemative to KF,

In thas paper, the RL3 techmique iz presented for
estimating &K, and Ej; from data samples of Adt),

Awyt), and ATejt) by conduchng tim e-dom am simula-
tions over wide range of P-0 loadings uang MAT-
LAB. The performance of the RLS teclmigue is com-
pated with the performance of KF and Adeline tech
nigues in term s of convergence and steady-state error
The static L3 is used as benchmark for steady-state
estimates companson Moreover, the caloulated values
of the torque coefficients are used for calculating the
cptmum values of the parameters of a lead-lag power
system stabilizer (P33) which is used for enhancing
the small-signal stability of the power system under
widely varying loading conditions.

2. Overview of Parameter Estimation

Technigues

Farameter estim ation atm s &t estim ahing parameters

that are constant along the estmation process [t is
necessary that a set of measurements shapes the rela-
tion between these measurements and the parameters
to be estimated A discrete linesr system can be
described as

¥(k) = H(k — )X (&) 6
z(k} = y{k}+ v(k) @

whese k) is the system output at time wnstant k, =(k)
15 measured system output, and v(k) 15 a Zero-mean
white G aussian noage term which counts for measure-
ment noise and modeling uncertanties. Hyk) and k)
are the inform ation matnx and the unknown param eter
wvector, respectively. The parameters in X can either be
constant or subject to infrequent jumps.

2.1 Static Least Squares Estimation (LS)

Inleast sguare estimation unknown parameters of a
linesr model are chosen in such a way that the sum of
the scuares of the difference between measured and
the predicted values 15 a mummuin . For a linear system
thas translates into finding the parameters, usmng all
avallable measurements, that mimmizes the sum of
seuare error function as follows:

E(Z,5) =%£(:(:‘}—Hi’)’ @
i |

Differentiating  E(¥,n) with respect to X and
setting the derivative to zero will lead to the well-
kmown slosed-form LS sohition as follows:

k@y=|pin, o] =1t @

wwhere ¥ 15 known as the LS eshimate of X, and A7 is
the left preudo inverse matnx. In online LS parameter
estim ation one has to recaleulate (4) each time when a
new measurement becomes avalable. To circumvent
the problem of recalculating (4), a recursive version of
the above algorithm has been derived

2.2 Kalman Filtering Estimation (KF)

Ealman filter 15 an adaptive least square srror filter
that provides a recursive solution for estimates
Kalmen filter is unplem ented by writing a state equa-
tion for the perameters to be estimated. The standard
EF hastwo stages: time-update (prediction) and meas-
wrem ent-update {correction), respectively, inthe form:

X (k)= - DXk —1Hwk—-1) (5)
Z{ey=H (k) X (K} +w(k) (6)

where Tkl isnxl parameter eshm ation vector, $(K) 15
nzn parameter transition matrix, S0k 1smxl measure-
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ment vector, (k) is mxn measurement matrix, wik)
and v(k) are zero-mean random sgnal representng
measurement errors. The recursive process starts by
assuming an imtial eshimate of X (K} and its errvor
covariance Fik) The updated state estim ate equation
15 obtained:

X G X arE@E®-ERE®) 0
An update of the covartance matrix 15 obtained:

P, (6= - K(YH ()} (k) ®

whete the Kalman gan matrix K 15 defined as:

K(k)= P.(BHT ()2 (k) ©)

where

T
O(E) =(HEP (OHT (k)+ R)) i
Wext, a prediction of the states baged on optmal
estimates and the covariance matrix are obteined:

X_(k+1)=0F)X, (k) (11

P (k+1)= O(R)E, ()07 (k)+ O(k) (12)

where Rk} and Ok are the covaniance matnces of the
error random signals vik) and wik), respectively

2.3 Least Mean Squares Estimation (LMS)
Although (4) bears simple and straight implemen-
tation of the LS estmation method, thes can carry defi-
cient numernceal stabality in the event of bad condi-
tioned egtim ation problem. For sobnng thes deficiency,
alternative adeptive iterative techmugques were devel-
oped to avoid direct inversion of (4) to produce stable
solution. The iterative techmigue conmsts of an adap-
trve filter acting on input sequence Xnl) = [x, %2 ...,
X,] at time k to produce an output yiw) The filter 15
designed so that the ocutput should spproximate a
desired or tramning output di). The emor en) between
the desired output and the actual output 15 used to conv
trol the filter weights, hence making the filter data
adaptive. A normalized sterative formula for the solu-
tion s gven by the Widrow-H off delta adaptation rule

ae(k) X (X}
A+XE X(B)
where e(f) = dik) - y¢k) 15 the prediction error, pfk) 18
the estimated signal magnitode, & 15 the learming
paremeter (reduction factor), A is & swmtably chosen
small positive constant added to the divisor to avoid
division by zero, Equation (13) 15 known as the nor-
malized least mean squares (NLMS3) adaptive filter
update. The LM3 algonthms ere dersved from L3
algonthm usng steepest descent rule. The LM3 algo-

Flk+h) =Wk + {13)

rithm s are attractive asthe update eguations is compu-
tetonally simple, requring no matnx wversion or
other expensive operations The update equation also
wnndicates the possibility of real-time implementation
using Adaline as shown in Fig 1. The Adabne pro-
duces a linear combination of its nput vector A7k} =
[xj, xa, ..., x,] attime k. After, the input vector is mul-
tiplied by the weight vector Wik} = [w wa . W],
the wetghed inputs are combined to produce the hnear
output (k) = k6T . The weight vector 15 adjust-
ed by an adaptation rule so that the output from the
Adeline algorithm (k) 15 close to the desired walue
d(k). Perfect traiming 13 attained when the eiror is
brought to zero. The nomerical values of & and 4
greatly affects the performence of the Adaline estim a-
tion

Walght Vacter

|

|

Figure 1, Adaptive LMS estimater architecture
{Adaline)

2.4 Recursive Least Squares Estimation (RLS)

For real-time eshimation, itis computetionally more
efficient 1f the parameter estumates in (4) are updated
recurmvely as new data becomes available onbine
Suchreformulation reduces the computational require-
ment significantly, making the ELS extremely attrac-
tive for on-ling parameter estimation application. The
recursve estimation algorithm can be written in a
number of different equivalent forms (El-Hawary
1939}, The following form of the RLS algorithm has
many computational advantages The recursive form 15
gven by

X =% (k-1)+ K(k}(x(t} —-HB)E (k- 1})
where the gan matroe KE(K) 15 defined as

E@® =P (BHEE®

where @k 15 defined as:

(14
(15)

@(k}-(1+H(k}£ ®HT m) (16)

The eguivalent of the state error covarience matox
Pk 15 gven by

F, (k) =(I-KE)H (X)) P (k) (17
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Equation (14) updates the estimates at each step I
based on the error between the model output and the
preducted output

The equations for the recursive least squares meth-
ods bear many smmilantes to the Kalman filtening
equations. The differences between KF and the RL3
method are: in the predictor stage of the KF, a predic-
tion of the state based on the previous ophimal estimate
15 obteined by

X_(y=o(k-1)X (k-1 (18)
whereas, in the ELS method, the transition matnx 15
assum ed to be wuty and thus:
i—{k) =X+{k]'=1{k] (1o
In addition, the error covartance matrix 13 obtained
by
PR =2 (-DP.(k- DT (k-1

The RLS algorithm, when applied to param eter est-
mation, presents two advantages: avoids matrix inver-

(20)

sionn and needs smaller matnices, which implies less
m emory storage and compuhing time

3. Study Power System

The system conmdered in this paper 15 a synchro-
nous machine connected to an infinite bus through two
parallel transmission lines as shown i Fig 2, The
maclune 15 equipped with a voltage regulator, & stahe
exciter, andlead a legd-lag PR3 The param eters of the
gystem are given in Appendix A

. %
1
A
= i -
I‘m 04 m -

AVR Infemite Bos

Expiter

P88

Figure 2. Single-machine infinite-bus (SMIE) sys-
tem

For small-signal stabality analysis the 3MIB sys

tem 15 linearized et a particulsr operatng pownt to

obtain the lineanzed power system model as follows
(Abdel-Magd and 3wift 1976):

d2A8

M ? = AT, —AT, (21)
AT, = KjA8 + KoAB) (22)
Ks Ky Ky (23)
=—3 AR, ¥4 -

? L+&T) Ky fd 14+8T, K
AT, =KgAS + KghEg (249

where T, and T, are the mechanical input and electri-
cal output torgques of the generator, respectively, Mis
inertia constant, Bgis the fisld voltage, and T g, i the
open circuat field time constant. The E;-E; constants
are the SMIES constants which, with the exception of
Kz which 15 only function of the ratio of inpedance,
are function of the operating reel and reactive loading
a5 well as the excitetion levels in the generator.

A static type exciter 15 considered in this study with
the voltage state By It is desciibed as

dABg _

1
— _E[x,(ar,g—amaum}—axﬂ]{zﬁ}

where Ky and T, are the gain and time constant of the
excitation system, respectively [p is the reference
valtage

The P35 13 modeled using a two-stage phase lead-
lag compensator end a washout filter ingstalled in the
feedback loop. The mnput signal is the rotor speed and
the output 15 the PS3 signal 1ipss.

Figmwe 3 shows the well-known Phillips-Heffron
block diagram of the linearized model of the 3MIB
gystem . The interaction between the speed and voltage

control equations of the machine 15 expressedin terms
of six constants K1 - K& The celculations of these
constants and vartebles are gvenin Appendix B.

Figure 3. Block-diagram of Phillips-Heffron
meodel

& linearized state-space model in the form of

dX /dt m AX + BU

Y=CX+DU
15 developed from the Plullips-Heffron block diagram
A fourth-order model with a state vector X= [ AS Aa
AE, AEg ] 15 consmdered for the synchronous genera-
tor. The system matnz A 15 funchion of the system
perameters, which depends on the operating condi-
tions. The pertwbation matiix B depends on the sys-
tem parameters only The perturbetion signel 7 15
either AT, or V. The output matrix C relates the
desired output signals vector T to the state vanebles

(26)
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vector £ The A B, C, and D matrices of the system
are shown in Appendix B

4. Stability Assessment Using Modal
Analysis

When a power system experiences a small dishu-
bance as a result of small changes of loads, the dynem-
ic response of the system states can be described as

linear sum of various modes of oscillations (Kalith,
1980)

x0)- £ (HX.)¥U; @n
=1

whete A; are the distinect eigenvalues of the system
meatnx A with a corresponding set of night and left
eigenvectors [T, and %, respectively The oumber of
the characteristic modes 247 equals to the number of
states of the linearized power system model Real
eigenvalues indicate modes, which are aperiodic
Complex sigenvalues indicate modes, which are oscil-
latory. For a complex eigenvelue 4= G i@, the
amplitude of the mode varies with ase%i and frequen-
cy of the oscillation f = @27 Accordingly, by
expanding (27}, the individuoe] state response x50 can
be computed as:

x(f) =§Bl-e“’ % fﬁe"*" co2efr+d) (29

where 4, & f;, and ¢ are the i mode amplitude,
damping factor, frequency, and phase angle, respec-
tively In3MIB system, the rotor oscillations are dom-
inated by the low-frequency electrom echamecal mode

The mode is identified by afialyzing the night and left
eigenvectors in conjunction with the participation fac-
tors (Hsu and Chen 1987), Typical ime responses of
the rotor angle, speed, and electromagnetic torgue of a
SMIB system following & small pulse increment 1n the
mechanical torgque are displayed in Fig 4

5. Stability Assessment Using Torque
Coefficients

Following & small disturbance, the electromagnetic
torque variation is dominated by the low-frequency
electtomechanical mode. Accordingly, the torque can
be decomposed into synchromzing torque component
E, A4f) and a damping torgqus component E; Aa(f)

as follows (Demello and Concordea, 1969

AT ()= K,A8() + Kybo(s) 29)

The synclromizing torgque is responsble for restor-
ing the rotor engle excursion, winle the damping
torque damps out the speed deviations The synchro-

nizing and demping torgques are usually expressed mn
terms of the torque coefficients K and K, It can be
shown that the damping factor & end the damped fre-
quency @ can be related to K| and K; as follows (Hu,

1983):

Xy, 0K, (K 30
_ij a [_J [ j
2 M 2

where the damping factor & and the damped natural
frequency @ are related to the damping and synechio-
mzing torgue coefficients K; and K, respectively
These coefficients can be calculated repeatedly which
makes it sutable for guantitative and cualitative
assesam ent of the absclute as well as relative stalality
of the power system Interms of K, and K both coef-
ficients must be positive for a stable operation of the
machineg

WA BAYAW (WL TA1W W W
1A YiAVEYA'AYAY

Thu n dnk

1

i aingm [emgmna|
e

Pt e L]

Fig. 4-a Syuchmncns machine rotor angls responss
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Hig. 4-¢ Synchronoos maciving sleotromagmetic torgque reponss

Figure 4. Synchroneus machine time responses

The torgque coefficients K, and &; can be estim ated

mum enically mn tme-domain using the fime responses
A&y, Aw(f), and AT (7). Estmation of K and K can

be described by the discrete state and measurement
equations as (Feilat et af 1900)

AT, (k) =HK (k)
AT, (R=AT, (k) + e(k)

@1
32)
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where H = [A&K) Aak]] and Tik) = [K] Ka-]T at the
time instant k. The estimated param eter vector Xis cal-
culated by mimmizing the sum of the square esros
between the electric torgue ATk} and the measured
torque AT, ) using either the static L3 technique or

arry other adaptive technigque such as KF, Adalme or
RLS techmicue

6. Stability Enhancement Using PSS

6.1 PSS Structure and Design

Orignally, the LFO problem is tackled by applying
P35, which provides & supplementary excitabion con-
trol sgnal to enhance the dampng of the poodly
damped LFO. The conventional dessgn using a lead
lag compensator as shown in Fig 3 was inveshgated
on & hineanzed model of 3MIB system because of its
simple structure, design end implem entation (Rogers,
2000 and Yu 1983). A stebilizing signal derived from
generetor speed 1s admitted to the reference input of
the sutomatic voltage regulator (AVE) so that an elac-
trical torgue component in phase with speed vartation
15 created to wicrease system damping The govermng
equations of & two-stage lead-lag P33 are gven as:

(L +5T,) Axs= sT Aa (33)
(1 +5T7) Axg=sT g (34
(1 +sTq) Aupge= K, (I1+35T3) Axg (35

P33 typrcally is designed based on linear control
theory wsing the concept of phase compensation (Yu
1883). The parameters are determined baged on a lin-
earized model of the power system around a nominal
operating point where they can provide optimum
damping performance of LFO Phase compensation is
accomplished by adjusting the PS5 parameters (K

Ty, Ty, T3, and T4 to provide approprate phase lead
to compensate for the phase lags through the generator
and AVE-excitation system over a wide frequency

range (0.1-2.0 Hz) of LFO such that the P33 provides
torque changes AT () in phase with speed changes

Aa(f), Tuwing should be parformed when system con-
figuration and operating conditions result in the least
damping Moreover, a good tuning scheme 15 required
to achizve robust performence over a wide range of
pperating conditions by tuming the P35 parameters
according to the damping factor and damped frequen-
cy of the poorly damped local mode A =oc £j@. Intlus
paper, & 15 idenfified from the torque coefficients K,

and K as given by (30)

6.2 PSS Tuning Using Phase Compensation
Method

In practice, both the generator and its AVER-exciter
exlubit frequency dependent gain and phase charactes-
istics Ggls) Hence, the P33 transfer funchion should

have appropriate phase-lead circuit to compensate for

the phase lag from AV H inputs to the generator electnic

torgue. The steps for destgning & P33 can be summ a-

nzed as follows (Yu 1983):

1. Identify the complex frequency of the local mode,
5 = o +j& using calculated values of the torgue
coefficients X and K

1. Ewvaluate the transfer function Ggs) and its phase

angle using Plullips-Heffron block diagram wath
the rotor speed held constant,

= K.l.xi
A+aL Y s EM KK, o, (36)
= |Gx {ﬂ|£?

3. Design a phase lead-lag P33 with a phase lead angle
<G s) = - For a two-stage lead-lag compen-

sator, the transfer function GJ5) has the fomm:

_(+s%) (1+4T)
¢+ A+5T) .,
whese Ty=T,, T3=T; and T7 15 chosen such that Ty > T,
For fixed values of Th, Ty and T, the time constant T

15 calculate, usng

tan{{¢- 7)/2)

Gyls)

(37

5 - om(y- H2)) o
whers
—2tmn | P
$=2tm |:1+a-1';:| (3

For adequate damping ratio of the new local mode
& say 0.15, celculate the P38 gain using the root

locus method The gan E 15 given by
K- XM
X, |G¢ L-ﬂ'-l-_Fl|Gx l”‘l_fl

7. Simulation Results

(40

In thus study, the performance of the RL3 for the
estmation of X, and E; is compered with KF and

Adaline esthmation technigques. The evaluation 15 car-
ried out by conducting several offline mmulation cases
on & inearized SMIB system model without P33 using
Matlab/Bimulink toolbox. The system mputisal. Ll pu
mechamcal torgque pulse (AT, ) for 100 ms. The system
output vector comprises rotor angle, speed, and elec-
tromagnetic torque. A sampling rate of 100 samples
per second, over a window size of 10 seconds, 15 set
for all simulation cases.
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Figares 5 and 6 display the performeance of KF,
Adaline and RL3 in estmating K, and Ej; for a stable
light load condition of P;=0.40 and 0,=-0.20 pu. It can

be seenin Fig 5 the supenionty of KF convergenics in
comparison with Adeline. The Adaline suffers from

final estimate It can also be observed that the RLS
techmigue was able to converge to the final eshmates
of K.s and K; in one-fifth of the window size.

Tahle 1. Comparison of final estimatesof K, and

K
large oscillations and overshoot, while KEF smoothly z - -
approaches its final value Rotor |  Estimates of Torque Cocfficients
Mode | K, LS EF Adaline RLE
: 0615 | K, | 0844 | 0344 | 086 | 03H
J Luaiinn L5797 | K 1023 | 8.149 5.206 10.061
—
PR i TF_ P Qh- 151 | £ | 1.2M 1,240 124 1224
i- ' Y y N 146,780 Xy | 3013 | -5.001 -3.01% -3.03
£ (]
o,y [
A [IF] 1 _".I;I“} an I A
Fig. 5¢ Batimation of £, naing Adaline amd KF. s
i L'u o I
3 “ s bl T 7 R T R R ] Y T LR T
5. il Snipa Fig. 7-a Batimation of X, naing Adaltns and KF.
z fr' j__.f——‘
d ‘ | B 3
[X] (K] _"-til‘} [} [} i . '\ Adaine
Pig. 55 Betimation of X, ming Adelins a:d EP. o I V4
- [
et | o
L E S :—dﬂ_ g ‘-_-"—'Iq.
- I T |

K [ i)

i
A

L F 3
(0]
it

[] 1 [E]

1.0
Tha » H}

Fig. 6~a Eetimetion of K using FL3 wod KF.

i

v
\
\
!

| ] LH ] nLa [ a8

™ ¥ Y
Fig. &b Extmetion of Ky using RLS and KF.

A companison of final estimates of K, and K ;for bwo
operating points are given in Table I As can be seen,
the RLS gives the most accurate estimates in compar-
igon with Adaline or KF

Likewisge, Figs 7 and § shows the performance of
KF, Adaline and BL3 in estimating K, and E; for
unstable heavy load condifion of P=020 end Q,=-
020 pu. The performance of the RLS inFigs 7 and 8
relatively outperforms KF convergence behavior and

Them i}

Fig. 7-i Bathriuctive of X; vaing Adaline snd KF.

o g r‘,{‘ -q"u
ol e
Pl D
[ ]
.i [ ] L] [ ] - ik b 1.8 4 18 na [
Fig. 8- Estimation of X, ming R1S and KF.
3
E 1
NI

E]
Timn [mf

Fig. 5t Extimmtion of X, using RLS snd KF.

Veriation of the final estimates of the torque coef-
ficients £, and E; of the uncompengated SMIBS over
a wide range of operating condihions (P, 0.1-1.0 pu
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O, =-0.2-10 pu) vsing RL3 techmique is depicted in
Fig 9. It 15 clear that although the synclwomzing
torque coefficient Ksis positive over that range, how-
ever, the machine 15 unstable for medivm and heavy
loadings as indicated by negative values of the demp-
ing torque coefficient £y

Fig 5% Varlation of the dereping trers oonlficket X, wifos: P25

Y

Pl Mg b g o]
-

< i vgd. uﬂ Un'f" nuno..v

- ¥

L] 'I'IlEhl ]
Figure 10. Rotor angle response following susse-
sive disturbances

The abality of ELS in eshimating Ky and Kj; follow-
ing successive disturbances, as shown in Fig 10, 15
presented in Fig, 11. The disturbance was created by
applying short pulges of mechanical torgue for 100 ms
It is evident that RLS 15 able to obtain accurate esti-
mates of the torque coefficients and responds gquickly
as new data arrive

The peiformance of the EL3 techinigue in estimat-
ing X, and Ej; following a loss of a transmission hine

which yielded an unstable operating point is shown in
Figs 12-13. The load condition 15 set at P, = 0.3 pu
end , = -0.2 pu and the line 15 tnpped 10 seconds fol-

lowing the first dishubance. Figures 12 and 13 reveal
that RLS 15 capable of tracking large changes in oper-
ating condition

Fol 7 Mo 220100 1027

i
e T
LY
e o
baN "‘E
HE nin
oorm
LE L)
[E
e
Rt 3 . T3 [T "

Lo ]
L@
=
2
L ]

(L} L

q FIET O L B "111"' ILE L
T e YY) il
-I o '"L:" U U , U_”

Malsr &ugln (ngman]

i‘ " "'" . = ey 'Isl 11
& im
-] . L RN T e
sl r L i 1T T TEIs
Fig 13-a X; tracking fedlowing loas of tresarndasen e,
% | T |
. %—ITTIT‘. l{-‘
i .” "HLE L
: : L_____..-m.l L
A 1|' [TERATT {
- - 'FI-‘-I - (1] LL3 m L) an

Mg 135 Kyhracking following loss of tanmissdon Hoe,
The final estimates of K, and E; and the correspon-

ding eigenvalues of the rotor oscillations at the two
operating situations are described in Table 2

Table 2. Estimates of K, and ; following loss of

line witheut P55
Conditen Stabls conditlon Unstabls condition
Paranwter X, =020 [pu} =044 ﬁ:ll;_l
A=aiim .1T7 £577.733 Hk151 & /6. 7TRD
£, (poirud} 1586 1.2H)
K, (pofead’s) 3384 -3.013
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The effect of variation of the exciter gain K4 on the
dynamic performance of the power system 15 evaluat-
ed in term s of the synchronizing and damping torque
coefficients K, and K; for two different loading condi-
tions as shown i Fig 14, It can be seen that high gain
values of K4 reduce system stability and produce neg
ative damping torques for certain loed condihions. On
the other hand, the synchromizing torque coefficient
remains relatively unaffected by the large vanation of
the exciter gain

plotted in Figs. 16 To obtain optmum values of Ko
and T; over wide range of loading conditons the
dampingratio £ and Toare setto0 3 and0.13, respec-
tively, Moreowver, the corresponding synclwomzing
and damping torgue coefficients were calculated uning
BLS techmgue and are depicted m Fig, 17 It 1s clear
the tuning PSS with varnng load condibons keeps the
system stable asindicated by the positive values of the
torgue coefficients K, and Ej;

Table 3. Effect of PSS on small-signal stability

N S S Condition Unetable conditicn Sieble condition
] ] Lne Paracroter X, =040 {w) X, —040 ()
ks PowdQ, | O8pumd-02yw | O8pumid-02pu
o = - A=aijm | +LIS11/6.780 -1,.303 + %5387
' H"‘H X, (pu/rad) 12X 1113
’ - | X, (pofmdis) -3.013 14.682
4 - Ky - 0011
[1] (1] ] [1] 'll-l‘ 1. i 1 me [ 1] fl w r' 5 T.m’
Fig. 14-aEffbct of verixiion of Xy an X and X; (P, = 0.8, =02 pu}. To= T, z 157

o 5 o e
: "
g
Lo )} I!’. ———————

[ 1] L1 ] ] [1] L1 1w 144 1. RL1] (1]
[ 1]

Fig 1ib Bffecy of vemlption of X on K, nd £y (P = 0.8, 3-=H)2 po).

The effect of the P33 on enhancing the small-sig
nal stability of the 3MIB3 following & loss of & trans-
mission line at a loading condition (P, =0.8 pu and 0,
=-0.2 pu) 15 demonstrated in Fig 15 It can be seenthe
P33 has effectively improved the dynamic behavior of
the SMIBS end stebibized it. The walues of the P35
parameters (Ko and T;) and the corresponding torque

coefficients (K, and K5 are illustrated in Table 3.

T IR s e 1d graidm i p
A inl ALV TR T
HAWANRIFRINIIEE
ALV
NG VARTERY
. \l'lll.hll hemp J{nm 1‘«’

Fig. 15- Rodat angle reaspome with aond withoot PSS

To compute the optimum values of the P33 param-
eters (Kpoand T;) and the corresponding torgue coeffi-
cients (K, and Eg) over a wide range of loading conds-
tions, & pulse disharbance in the mechanical torgue was
uged to perturh the system from its opersting point
Following the method described in section VI, the
computed P33 parameters were computed and are

Fig. 16-b Vanahon of the P35 parameter I overwide loadings

Conclusions

This paper examines the performance of recursive
least squares, Falm an filtering, and Adaline estmation
technigques for real-time calculation of the symchromz-
ing and demping torgue coefficients of a =mngle-
m achine wnfinite-bus system.

The accurate sstimation of the torque coefficients
will help in assessing as well ag enhancing the small-
signal stability of power systems The performance of
the three adaptive techmiques in terms of convergence
and steady-state estimate are examined Compared to
Kalman filtering and Adaline, the recursive least
sguares gives fast and accurate estimates of the torque
coefficients Further, the robustness of the recursive
least squares algosithm and its fast convergence
reveals that the proposed RL3 can be efficiently
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employed for real-time dynamic stabality assessment
of single- and multi-m achine power systems by means
of the torgque coefficients over wide range of operating
conditions vsng digtal records of the rotor angle,
speed, and electromagnetic torque deviations.

g 174 Vcistion of tho oociclost Xy with FEE ovor wido Joadings

& power system stabilizer whose parameters are
altered to compensate for veristions in the system
loading 15 then desmgned using phese compensation
method wvhlizing the synclywonizing and demping
torque coefficients The parameters are optimized
offling for a selected set of pnd pomnts m the real
power and reachive power (P-0) domain The effec-
tiveness of the power system stabilizer in echancing
the small-signal stebility under widely varying loading
conditions 1s verified through the recalculation of the
synchronizing and damping torgque coefficients using
recursive least-square technigue
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APPFENDIX A

The parametcrs of the SMIB syxtem s ax follows;

Mackine Parameters (irs):

20=16,2,= 1552, =032, M=10.0,Tp=60 3, D=0
ay=120n mdk,

Trananizsion Line (pu):

% = 0.0, x, = 0AQ per line
Loading )

Foo= 1.0, P=0_8, () =2
Exciter/PSS:
Ky=50, Ty= 0405 T=T=7.03, L=T=0.15 K=001, F,=5

ArrENDIX B

For e SMIB syatem, the following relationships epply with all variabler with subscript o arc caleulated
disturbance operating valoes comresponding to the opersting conditions P., (4, and #u.[5]:

{ m Pdrh 1
i CEE TR b
Vo, =igp%, B-2)
Voo =4V2—V3) B-3)

2
l" = Q"_:xlfﬂ (3-4]
go
E o=V tiypx, {B-5)
B = g +3,0) + (v~ %,00)? ®-5)
5 —tan Vio +xj!_) ;
o [_v', i, B-7)

For the ease r, = 0, the constants K, -X; arc cakonlated & fiollowa [5]:

)
X .t‘

Ky =——=i_E,sind, + E E,c088,
* x,+.l::;lp 4 - X, + X, e ¢ B8
_E,sin8, B-9)
2T x,4x
x,=""""" (B10)
X txy
r
g —X i
E,=—2_—LE ging, (B-11)

F
x, +x;
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xq 'I"# ﬂ' v'. . (E']'E}
=2 F s, ————F, tin
L ;,+1,F.,E" ‘ix.wéli’.,g" 4
S B-13)

'=1',+.t'; Fu

The 4, B, C, and P makiex of the state-apece model (26)

are giva below:
i o ®, 0 o 0 o
-X M - DiM K, [M 4 0 4
—EJT, 0 yne) -y 0 &
A= _KJKSFJ- n _K.l Kl d _]F'J. u “
-K fH 0 -k, fH L —]fT_ {
-K.T f{m'a] 0 —KJ'J{IH; ) ¢ ]ﬁa{l -T, H'-} _lﬂ;
__Kc'EII;I; IMTJ 0 'IexzilT:MI; ) ¢ KJ.F"JZ[I'TJT.] Ieﬂ:.{l -1, ﬂ;)

h[u M 6 0 UM LfME) xc:ird{ur:nl]’

60 0 0K/, 0 O 0

16000¢
c=|0 1 0 00 ¢ ¢,D=[0]
KO0K 0040

o
0
0
KJITI
0
D
-1/,




