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1.   Introduction

The problem of fault detection and isolation (FDI)
is a crucial issue for the safety, reliability and perform-
ance of industrial processes.  

The usual approach to fault diagnosis is based on
hardware redundancy (multiple sensors, actuators and
components) and uses a voting technique to decide if a
fault has occurred and to locate it among the redundant
system elements  (Frank 1990).   Instead, the analyti-
cal redundancy FDI approach, also referred to as the
model-based FDI approach, makes use of a mathemat-
ical model of the monitored system [(Frank 1990).
The task of model based diagnosis methods consists of
detecting faults that may occur in the system and
which can be additive or multiplicative in nature.

Basically the FDI procedure consists of two main
steps: generation  of  residuals which should be useful  
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fault indicators, and residual evaluation which
involves decision making. The model-based FDI
approach which has received intensive attention uses
mainly state and parameter estimation techniques
(Frank 1990).  Model based FDI performance is
directly related to the accuracy of the mathematical
model of the monitored system. The effect of model
uncertainties, disturbances and noise is therefore a key
issue in model based fault diagnosis.

The main design requirements of model based fault
diagnosis procedures are thus concerned with the
problems of robustness with respect to model uncer-
tainties and enhancement of sensitivity to faults. These
requirements are contradictory so a trade off is needed
to cope with sources of false alarms and missed detec-
tions. Two strategies may be used: an active strategy
consisting in robust residual generation and a passive
one through robust residual evaluation. Most of the
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existing model based FDI techniques rely on the use of
linear system models  (Benloucif and Staroswiecki
2002 and Frank 1990).   Often, nonlinear systems are
described by linear models with additive disturbances.
Robust residual generation based on unknown input
observers to achieve disturbance decoupling may pro-
vide an efficient solution to fault detection and isola-
tion problems. As far as linear systems are concerned
the problem of robust residual generation may be con-
sidered to be mature ((Benloucif and Staroswiecki
2002, Frank 1990 and Patton and Chen 1997)   where-
as the FDI problem for nonlinear dynamic systems has
been investigated to a lesser extent  (Benloucif and
Balaska 2006; Garcia and Frank 1997 and Jiang et al.
2001).  

Alternatively, FDI can be performed using qualita-
tive techniques such as expert systems, fuzzy logic,
neural networks (Al;exandru et al. 2000; Benloucif
and Mehennaoui 2002; Benloucif and Mehennaoui
2005; Chen and Lee 2002; Evsukoff et al. 1999; Frank
1990; Isermann 1998; Schneider and Frank 1996;
Simani and Fantuzzi 2002; Takagi and Sugeno 1985,
Theilliol et al. 1997 and Uppal et al. 2002).   To over-
come the limitations of the analytical FDI approach,
the actual trend integrates model based (analytical)
and knowledge based (non analytical) methods in
order to take advantage of their respective performanc-
es. Residual generation and residual evaluation for
decision making may be achieved by using appropri-
ate combinations of different techniques such as state
estimation, parameter estimation, neural networks,
fuzzy logic inference.

In (Benloucif and Mehennaoui 2002)  a fault diag-
nosis procedure for linear systems used a combination
of an analytical residual generator based on Kalman
filtering and a fuzzy neural network for residual eval-
uation. In this work, an extension of the neuro-fuzzy
FDI scheme given in (Benloucif and Balaska 2006) is
proposed.  It is based on a two step neural network
procedure:  The first network which has the ability to
model a wide class of nonlinear dynamic systems acts
as an on-line residual generator. The second network
performs the decision making which consists in detect-
ing and isolating a fault when it occurs. This neural
network coupled to a fuzzy inference block acts as an
on-line fault classifier.

The paper is organized as follows. In section 2 the
model of the induction motor is presented, starting
from the classical Park transformation. The architec-
ture of the neuro-fuzzy scheme used for residual gen-
eration and evaluation is discussed in section 3.
Simulation results are given in section 4 to illustrate
the performance of the proposed neuro-fuzzy FDI
scheme for sensor fault diagnosis of the induction

motor.

2.  Model of the Induction Motor

Assuming linear magnetic circuits and a balanced
three-phase system in the (a, b, c) frame, the electrical
equations of  the induction  motor expressed  in the
two-phase stationary (d, q)  reference frame
(Benloucif and Balaska 2006) are:

(1)

(2)

where , I, V are the stator/rotor fluxes, currents and
voltages expressed in the (d, q)  reference frame.  s is
the angle between  the stator reference frames (a, b, c)
and (d, q), and r is the angle between  the rotor ref-
erence frames (a, b, c) and (d, q).  Rs, Rr, Ls, Lr are the
stator/rotor resistances and inductances, respectively,
and Lm is the magnetizing inductance.  For a squirrel-
cage IM the rotor voltages are zero.  The mechanical
equation is: 

(3)

and dthe electromagnetic torque Te is given by:

(4)
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A neuro-fuzzy network is based on the association
of fuzzy logic inference and the learning ability of
neural networks.

The neuro-fuzzy approach is a powerful tool for
solving important problems encountered in the design
of fuzzy systems such as: determining and learning
membership functions, determining fuzzy rules, adapt-
ing to the system environment.

The main points of the residual evaluation proce-
dure are described below. 

3.2.2  Residual Fuzzification
It consists in converting the numerical values of

residuals into linguistic variables. Each input (resid-
ual) may be described by three linguistic variables
(Negative, Zero, Positive). Each linguistic variable is
represented by a membership function which has gen-
erally a triangular or trapezoidal shape. The linguistic
variable Zero defines the range where the residual may
be considered to be unaffected by a fault. The linguis-
tic variables Negative and Positive define the residual
amplitude ranges indicating the presence of a fault.
The corresponding membership functions give the
extent to which a residual is or is not affected by a
fault.

3.2.3  Neural Network Structure
For fault diagnosis it is desirable to use a neural net-

work to model the nonlinear relationship between the
fuzzified residuals and the fault decision functions. A
multilayer perceptron network is therefore a good can-
didate. Moreover, to account for memory in the deci-
sion process it is necessary to use a recurrent neural
network (RNN). The RNN may be implemented as a
neural model described by:

(11)

where Dk ( fi ), i = 1...nf ,  are the fault decision func-
tions also referred to as fault indicators and fi are the
faults acting on the process. The regression vector
contains the fuzzy residuals Ri (k),   i = 1...nr ,  and the
delayed decisions Dk-1 (fi),  i = 1...nf .  Because of the
feedback introduced, the recurrent neural model may
be realized by a three-layer MLP.

This is illustrated by the example given in Fig. 5
which shows a residual evaluation scheme processing
three residuals (r1, r2, r3) to diagnose three faults (f1,
f2, f3).

The corresponding neural network has the follow-
ing architecture: an input layer with 12 units represent-
ing all possible states of the fuzzy residuals together
with the past decisions, a hidden layer having 4 units,
and an output layer with 3 units each assigned to a
decision function. The use of this RNN architecture
ensures reliable dynamic decision making (Alexandru

et al. 2000; Benloucif and Mehennaoui, 2005 and
Chen and Lee 2002). 

3.2.4  Training
Prior to on-line use, network training is performed

for all possible fault scenarios. During training a resid-
ual pattern corresponding, eg. to fault f1, is applied to
the network input and a one is assigned to the corre-
sponding output. The network weights are then adjust-
ed by an appropriate algorithm thus enabling the neu-
ral network to learn the imposed input-output pattern.
The use of the backpropagation algorithm is recom-
mended (Benloucif and Mehennaoui 2005).  The ulti-
mate goal of the training is to achieve the extraction
and selection of the necessary parameters defining the

inference rules

4.  Numerical Results

Results using MATLAB simulation are next pre-
sented to assess the ability of this diagnosis approach
based on neural and fuzzy techniques to detect and iso-
late sensor faults in an induction motor. Its model
expressed in the two-phase reference frame (d, q)  is
given by the nonlinear state space Eq. (5).

The squirrel-cage induction motor considered here
has power rating of 1 kW and its electrical and
mechanical parameters are as follows:

Simulation is carried out with a sampling period of
1 msec, with 400 V and 50 Hz sinusoidal inputs. In
normal operation, the outputs (Isd, Isq, )  and the elec-
tromagnetic torque Te are shown in Fig. 6.

Figure 5.  Example  of  a  RNN  used  for  residual 
evaluation
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4.1  Residual Generation
A NNARX model having the architecture shown in

Fig. 3 has been used with the following parameters: n1
= n2 = n3 = n1 = m1 = m2 = 1, d = 1.  Training of this
MLP network was achieved by the Levenberg-
Marquardt algorithm for different numbers of hidden
neurons.  For nh = 4, the output error cost reached at 36
iterations is E = 1.528e-002. After validation this
NNARX model is used to generate the residuals:

(12)
4.2  Residual Evaluation

After many tests on residuals for different fault sen-
sor situations to achieve a good trade off between
missed detections and false alarms, the following
membership functions for each residual were selected:

Residual 1: N1= [-1,-1,-0.005,-0.002]
Z1= [-0.0025,0 , 0.0045] ,     P1= [0.0035, 0.006, 1, 1].
Residual 2: N2= [-1, -1, -0.04, -0.015]
Z2= [-0.02, 0, 0.005],  P2= [0.004, 0.009, 1, 1].
Residual 3: N3= [-1, -1, -0.018, -0.015]
Z3=[-0.016,-0.0135,-0.012],P3=[-0.0125,-0.0115,1,1].

The RNN used in this simulation study is shown in
Fig. 5. Its training is based on the rules summarized in
Table 1 which have been obtained after many simula-
tion tests. The learning operation realized by the back-
propagation algorithm converged after 3600 epochs
with a sum of squared error E=0.025.

Each row of the Inference table represents a rule.
For example, rule 2 is expressed as:

IF {residual 1 is positive and residual 2 is negative
and residual 3 is zero} THEN sensor 1 is faulty.

Motor
Various simulation tests have been performed in

scheme and the results are quite conclusive. Bias and
drift type sensor faults are introduced during steady
state conditions of the system. For illustrative purpos-
es only a few fault scenarios summarized in Tables 2
to 4 are discussed.

4.3.1  Case 1
A bias type fault is injected on sensor 1 as described

in Table 2.
The corresponding residuals are shown in Fig. 7.

Although a single fault may induce changes in several
residuals ( here  a fault on sensor 1 affects positively
the first residual and negatively the second residual at
time t=2.5 sec)  the decision functions ensure success-
ful detection and isolation of the fault on sensor 1 as
shown in  Fig. 7. The neuro-fuzzy classifier has been
trained to recognize the faulty situations from the
fuzzified residual patterns according to the rule base
given in Table 1.

4.3.2  Case 2
This fault scenario of bias faults on sensors 2 and 3

is described in Table 3.
The residuals and the corresponding decision func-

tions are shown in Fig. 8. The faulty sensors are
promptly detected and correctly isolated.

4.3.3  Case 3
This fault scenario uses drift faults on sensors 2 and

Figure 6.  Stator currents (Isd, Isq), rotor speed , 
torque Te (normal operation)

Table 1.  Inference table

Table 2.  Case 1

Table 3.  Case 2

Table 4.  Case 3
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3 as described in Table 4. Drift faults are modelled as
ramp functions with given slopes.

The diagnosis effectiveness in the presence of sen-
sor drift faults is illustrated in Fig. 9. We notice a
detection delay for fault sensor 2. This delay, which is
dependent on the slope of the drift, gives rise to a tem-

5.  Conclusions

In this paper, a neuro-fuzzy scheme for on-line fault
diagnosis was applied to the induction machine. This
FDI approach relies on combinations of neural model-
ling and fuzzy logic which can deal effectively with
nonlinear dynamics and uncertainties.

The proposed neuro-fuzzy FDI scheme is based on

a two step procedure: a neural NNARX model is used
for residual generation and a recurrent fuzzy neural
network performs the residual evaluation task. Fault
diagnosis is achieved by training the network to recog-
nize the fault signatures from the patterns of the fuzzi-
fied residuals. The successful results obtained in sim-
ulation demonstrate the efficiency of this neuro-fuzzy
diagnosis scheme to detect and isolate bias and drift
sensor faults in an induction motor.
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