Main Article Content

Abstract

The use of fly ash in construction has been on the rise, yet its application in pavement construction remains relatively underexplored. This study addresses this gap by critically reviewing 70 years of research on fly ash usage in pavement engineering, offering valuable recommendations. Class 'C' fly ash is employed for soil stabilization, while class 'F' is used in concrete. In both flexible (asphalt) and rigid (concrete) pavements, fly ash primarily functions as a filler material. Fine ash, owing to its fineness, enhances asphalt concrete by reducing void ratios and water sensitivity, as well as easing subgrade compaction while increasing compressive strength. Incorporating fly ash into Hot Mix Asphalt (HMA) enhances resistance to cracking and oxidative ageing. Adding fly ash (up to 25%) significantly boosts soil failure stress and strain values by 106% and 50%, respectively, while a combination of 8% lime and 18% fly ash yields maximum shear strength. A modest amount of lime (1-2%) mixed with 10% fly ash achieves a maximum dry density of 1.98 gm/cm3 at an optimal water content of 12.62%. Additional testing by researchers corroborates and validates the findings of this literature review.

Article Details

How to Cite
Jazi, M., Gazder, U., Arifuzzaman, M. ., & Abid, M. . (2024). State-of-the-Art Review on Utilization of Fly Ash in Pavement Structures. The Journal of Engineering Research [TJER], 20(1), 33–44. https://doi.org/10.53540/tjer.vol20iss1pp33-44