Main Article Content

Abstract

This is a review presenting an overview of the developments in boundary integral formulations of the acoustic scattering problems. Generally, the problem is formulated in one of two ways viz. Green’s representation formula, and the Layer-theoretic formulation utilizing either a simple-layer or a double-layer potential. The review presents and expounds the major contributions in this area over the last four decades. The need for a robust and improved formulation of the exterior scattering problem (Neumann or Dirichlet) arose due to the fact that the classical formulation failed to yield a unique solution at (acoustic) wave-numbers which correspond to eigenvalues (eigenfrequencies) of the corresponding interior scattering problem. Moreover, this correlation becomes more pronounced as the wave-numbers become larger i.e. as the (acoustic) frequency increases. The robust integral formulations which are discussed here yield Fredholms integral equations of the second kind which are more amenable to computation than the first kind. However, the integral equation involves a hypersingular kernel which creates ill-conditioning in the final matrix representation. This is circumvented by a regularisation technique. An extensive useful list of references is also presented here for researchers in this area.

Keywords

science applied science basic science

Article Details

References

  1. AMINI, S. and HARRIS, P. J. 1990. A comparison between various boundary integral formulations of the exterior acoustic problems, Comp. Meth. Appl. Mech. And Eng., 84(1): 59-75.
  2. ATKINSON, F. V. 1949. On Sommerfeld’s radiation condition, Philosophical Magazine, 40: 645-651.
  3. ATKINSON, K.E. 1976. A survey of numerical methods for the solution of Fredholm integral equation of the second kind, SIAM, Philadelphia, PA.
  4. BANAUGH, R. P. and GOLDSMITH, W. 1963. Diffraction of steady acoustic waves by surfaces of arbitrary shapes, Journal of Acoustical Society of America, 35: 1590-1601.
  5. BANNERJEE, P. K. and BUTTERFIELD, R. 1981. Boundary Element Methods in Engineering Science, McGraw- Hill, London, UK.
  6. BRAKHAGE, H. and WERNER, P. 1965. Über das Dirichletsche außenraumproblem für die Helmholtzsche schwingungsgleichung, Archiv. Der Math, 16 (English Translation): 325-329.
  7. BREBBIA, C. A. 1978. The Boundary Element Methods for Engineers, Pentach Press, Plymouth, UK.
  8. BREBBIA, C. A., TELLES, J. C. F. and WROBEL, L. C. 1984. Boundary Element Techniques, Springer-Verlag, Berlin.
  9. BREBBIA, C. A., RÊGO SILVA, J. J. and PARTRIDGE, P. N. 1991. Computational Formulations, Boundary Element in Acoustics, , Comp. Mech. Publications, Southampton & Elsevier Applied Sciences, London, pp13-60.
  10. BRUNDRIT, G. B. 1965. A solution to the problem of scalar scattering from a smooth bounded obstacle using integral equations, Quarterly Journal of Mechanics and Applied Mathematics, 18(4): 473-489.
  11. BURTON, A. J. and MILLER, G. F. 1971. The application of integral equation methods for numerical solution of exterior boundary value problems, Proceedings of the Royal Society London, A232: 201-210.
  12. BURTON, A. J. 1973. The solution of Helmholtz equation in exterior domains using integral equations, NPL Report NAC30, National Physical Laboratory, Middlesex, UK.
  13. BURTON, A. J. 1976. Numerical solution of acoustic radiation problems, NPL Report OC5/535, National Physical Laboratory, Middlesex, UK.
  14. BURTON, A. J. 1974. Numerical solution of scalar diffraction problems, Numerical solutions of integral equations, ed. L.M. Delves & J. Walsh, Clarendon Press, Oxford.
  15. CHEN, L. H. and SCHWEIKERT, D. G. 1963. Some radiation from an arbitrary body, J. Acoust. Soc. Am., 35(10):1626-1632.
  16. COLE, D. M., KOSLOFF, D. D. and MINSTER, J. B. 1978. A numerical boundary integral equation method for elastodynamics I, Bulletin of the Seismological Society of America, 68: 1331-1357.
  17. COLTON, D. and KRESS, R. 1983. Integral Equation Methods in Scattering Theory, Wiley, New York.
  18. COPLEY, L. G. 1967. Integral equation method for radiation from vibrating surfaces, J. Acoust. Soc. Am., 41(4): 807-816.
  19. COURANT, R. and HILBERT, D. 1989 Methods of Mathematical Physics, 2: Wiley, New York.
  20. CRUSE, T. A. and RIZZO, F. J. 1968. A direct formulation and numerical solution of the general transient elastodynamic problem II, Journal of Math. Anal. and Appl., 22: 341-355.
  21. CUNIFARE, K. A., KOOPMANN, G. and BROD, K. 1989. A boundary element method for acoustic radiation valid for all wave-numbers, J. Acoust. Soc. Am., 65(1): 39-48.
  22. DOMINGUEZ, J. 1978. Dynamic stiffness of rectangular foundations, Research Report R78-20, Dept. of Civil Eng., MIT, Mass. USA.
  23. DOMINGUEZ, J. 1978. Response of embedded foundations to travelling waves, Research Report R78-20, Dept. of Civil Eng., MIT, Mass. USA.
  24. FENELON, F. H. 1969. Calculation of the acoustic radiation field at the surface of a finite cylinder by the method of weighted residuals, Proc. IEEE, 57(3): 291-306.
  25. GUIGGINI, M., KRISHNASAMY, G., RUDOLPHI, T. J. and RIZZO, F. J. 1992. A general algorithm for the numerical solution of hypersingular boundary integral equations, ASME Journal of Applied Mech., 59: 604-614.
  26. GÜNTER, N. M. 1967. Potential theory and its applications to basic problems of Mathematical Physics, F.Unger, New York. (First published 1934)
  27. HADAMARD, J. 1923. Lectures on Cauchy’s problems in partial differential equations, New Haven: Yale University Press. USA.
  28. HADAMARD, J. 1952. Lectures on Cauchy’s Problems in Linear Partial Differential Equations, Dover, New York.
  29. HARRIS, P. J. 1989. The numerical solution of the dynamic fluid structure interaction problem, Ph.D. Thesis, Polytechnic of South West, UK.
  30. INGBER, M. S. and HICKOX, C. E. 1992. A modified Burton and Miller algorithm for treating the uniqueness of representation problem for exterior acoustic radiation and scattering problems, Engineering Analysis with Boundary Elements, 9(4): 323-329.
  31. JASWON, M. A. 1963. Integral equation methods in Potential theory, Proc. Royal Soc., 273(A): 23-32.
  32. JASWON, M. A. and SYMM, G. T. 1977. Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London.
  33. JASWON, M. A. and ZAMAN, S. I. 1993. A new BEM formulation of acoustic scattering problems, BEM XV, Vol. 1: Fluid Flow and Computational Aspects, , CMP/Elsevier Science, UK/USA, pp281-304.
  34. JIN, C. 1993. A direct boundary integral equation method for the acoustic scattering problem, Research Memorandum No. 2/92, Department of Mathematics, City University, London.
  35. JONES, D. S. 1984. An exterior problem in elastodynamics, Math. Proc. Cambridge Philos. Soc., 96: 173-182.
  36. JONES, D. S. 1985. Boundary integrals in elastodynamics, IMA Journal of Applied Mathematics, 34, pp83-97.
  37. JONES, D. S. 1974. Integral equation for exterior acoustic problem, Quarterly Journal Mech. Appl. Math., 27(1): 129-142.
  38. KELLOGG, O. D. 1929. Foundations of Potential Theory, F. Unger, New York,.USA.
  39. KIRKUP, S. M 1990. Solution of the exterior acoustic problems by the Boundary Element Method, Ph.D. Thesis, Brighton Polytechnic, UK.
  40. KIRKUP, S. M. 1991. The computational modelling of acoustic shields by the boundary and shell element method, Computers & Structures, 40(5): 1177-1183.
  41. KIRKUP, S. M. 1992. The influence of the weighting parameters on the improved boundary element solution of the exterior Helmholtz equation, Wave Motion, 15: 93-101.
  42. KIRKUP, S. M. and HENWOOD, D. J. 1992. Computational solution of acoustic radiation problems by Kussmaul’s boundary element method, Technical Report MCS-91-13, University of Salford, UK.
  43. KLEINMANN, R. E. and KRESS, R. 1983. On the condition number of integral equation in acoustics using modified fundamental solutions, IMA Journal of Appl. Math., 31(1): 79-90
  44. KUSSMAUL, R. 1969. Ein Numerisches verfahren zur lösung der Neumannschen außrenraumproblem für die Helholtzsche schwingungsgleichung, Computing, 4: 246-273. (English Translation)
  45. KUPRADZE, V. D. 1965. Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem.
  46. LAMB, H. 1949. Hydrodynamics, 6th ed., Dover.
  47. LEIS, R. 1958. Über das Neumannssche randwertproblem für die Helmholtzsche schwingungsgleichung, Arch.Rat. Mech. & Anal., 2: (English Translation), 101-113.
  48. LEIS, R. 1962. Über die rand wertantgaben des außenraumes zur Helmholtzschen schwingungsgleichung, Arch.Rat. Mech. & Anal., 9: (English Translation), 21-44.
  49. LEIS, R. 1965. Zur Dirichletschen randwertaufabe des außenraumes der schwingungsgleichung, Math. Zeit., 90: (English Translation), 205-211.
  50. MANOLIS, G. D. and BESCOS, D. E. 1981. Dynamic stress concentration studies by boundary integrals and Laplace transform, International Journal for Numerical Methods in Engineering, 17: 573-599.
  51. MEYER, W. L., BELL, W. A., ZINN, B. T. and STALLYBRASS, M. P. 1978. Boundary integral solutions of three dimensional acoustic radiation problems, Journal of Sound and Vibration, 59(2): 245-262.
  52. MEYER, W. L., STALLYBRASS, M. P. and ZINN, B. T. 1979. Prediction of the sound field radiated from axisymmetric surfaces, J. Acoust. Soc. Am., 65(3): 631-638.
  53. MÜLLER, C. 1969. Foundations of the mathematical theory of electromagnatic waves, Springer-Verlag.
  54. NIWA, Y., KOBAYASHI, S. and FUKUI, T. 1976. Applications of the integral equation method to some geomechanical problems, Numerical Methods in Geomechanics, ASCE, USA, pp120-131.
  55. PANICH, I. O. 1965. On the question of solvability of the exterior boundary value problem for the wave equation and Maxwell’s equation, Uspekhi Mat. Nauk. (Russian Math. Survey), 20(1): 221-226.
  56. PIASZCZYK, C. M. and KLOSNER, J. M. 1984. Acoustic radiation from vibrating surfaces at characteristic frequencies, J. Acoust. Soc. Am., 75(2): 363-375.
  57. RÊGO SILVA, J. J., POWER, H. and WROBEL, L. C. 1992. Numerical implementation of a hypersingular BEM formulation for acoustic radiation problems, BEM XIV, Vol.1, CMP/Elsevier, London, pp199-216.
  58. RÊGO SILVA, J. J., POWER, H. and WROBEL, L. C. 1993. A boundary element mathod for 3-D time-harmonic elastodynamics-numerical aspects, BEMXV, 2, CMP/Elsevier, London, pp423-439.
  59. RELLICH, F. 1943. Über das asymptotische verhalten der Lösungen von Δu +λu = 0 in unendlichen Gebieten, Jahresbericht Deutch. Math. Verein, 53: (English Translation), 57-64.
  60. REUT, Z.1985. Numerical solution of scattering problem by integral equation method, Journal of Sound and Vibration, 103: 523-524.
  61. SCHENCK, H. A. 1968. Improved integral formulation for acoustic radiation problem, J. Acoust. Soc. Am., 44(1): 41-58.
  62. SEYBERT, A. F., SOENARKO, B., RIZZO, F. J. and SHIPPY, D. J. 1984. Application of boundary integral equation method to sound radiation problem using an isoparametric element, ASME Trans. Journal of Vib. Acoustic Stress Reliability Des., 106: 413-420
  63. SEYBERT, A. F., SOENARKO, B., RIZZO, F. J. and SHIPPY, D. J. 1985. An advanced computational method for radiation and scattering of acoustic waves in three dimensions, J. Acoust. Soc. Am., 77: 362-368.
  64. SEYBERT, A. F., SOENARKO, B., RIZZO, F. J. and SHIPPY, D. J. 1986. A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J. Acoust. Soc. Am., 80(4): 1241-1247.
  65. SEYBERT, A. F. and RANGARAJAN, T. K. 1987. The use of CHIEF to obtain unique solution for acoustic radiation problem, J. Acoust. Soc. Am., 81(5): 1299-1306.
  66. SHAW, R. P. and FRIEDMAN, M. B. 1962. Diffraction of a plane shock wave by a free cylindrical obstacle at a free surface, Proceedings of the 4th US National Congress of Applied Mechanics, pp371-379.
  67. SHAW, R. P. and HUANG, S. C. 1989. Element and Eigenfunction Forms for the embedding Integral Approach to Acoustics, BEM XI, Springer Verlag, New York, pp319-339.
  68. SMIRNOV, V. I. 1964. A Course of Higher Mathematics, Vol.4: Integral Equations and Partial Differential Equations, Pergamon Press, Oxford.
  69. SOMMERFELD, A. 1949. Partial Differential Equations in Physics, Academic Press, London.
  70. STALLYBRASS, M. P. 1967. On a pointwise variational principle for the approximate solution of linear boundary value problem, Journal of Math. & Mech., 16, pp1247-1286.
  71. TERAI, T. 1980. On the calculation of sound fields around three dimensional objects by integral equation methods, Journal of Sound and Vibration, 69(1): 71-100.
  72. TZU-CHU, L. 1984. A proof for Burton and Miller integral equation approach for the Helmholtz equation, Journal of Mathematical Analysis and Applications, 103: 565-574.
  73. URSELL, F. 1973. On the exterior problem of acoustics, Math. Proc. Camb. Phil. Soc., 74: 117-125.
  74. URSELL, F. 1978. On the exterior problem of acoustics II, Math. Proc. Camb. Phil. Soc., 84: 545-548.
  75. VAN BUREN, A. L. 1970. A test of the capabilities of CHIEF in the numerical calculation of acoustic radiation from arbitrary surfaces, NRL Report 7160.
  76. WAIT, R. 1973. Finite-element-type solution of integral equations, Ministry of Defence Research Report, Jan., Dundee, UK.
  77. WILCOX, C. H., 1956. A generalisation of theorems of Rellich and Atkinson, Proc. Amer. Math. Soc., 1: 271-276.
  78. WILTON, D. T. 1974. A numerical approach to some problems in acoustic radiation, Ministry of Defence Research Report, Apr., Dundee, UK.
  79. ZAMAN, S. I. 1994. Integral Equation Formulations of Exterior Acoustic Scattering Problems, Ph.D. Thesis, City University, London, UK.
  80. ZAMAN, S. I. 1996. A proof of Kussmaul formulation of acoustic scattering valid for all wave-numbers, Math. Research Memorandum No. 4/96, City University, London, UK.
  81. ZAMAN, S. I. 1997. An uniqueness argument for the Kussmaul type formulation of acoustic scattering problem, Proc. First UK conference on Boundary Integral Methods, University of Leeds, UK, pp134-142.