Main Article Content

Abstract

There is increasing interest in glow discharges because of their importance to a large number of application fields, like the microelectronics industry, flat plasma display panel technology, the laser and light industry and analytical spectrochemistry. To improve the capabilities of rf glow discharges, a good understanding of the discharge physics is highly desirable. The typical calculated results include the radio frequency (rf) voltage, the electrical field distribution, the density of argon ions and electrons, the electron energy distribution function and information about the collision processes of the electrons with the Monte Carlo model. These results are presented throughout the discharge axis and as a function of time in the rf cycle. Moreover, we have investigated how many rf cycles have to be followed before a periodic steady state is reached.

 

 

Keywords

Monte Carlo Simulation Glow Discharge Radio Frequency Plasma.

Article Details

References

  1. BOGAERTS, A., GIJBELS, R. 1995. The Role of Fast Argon Ions and Atoms in the Ionization of Argon in a Direct Current Glow Discharge: A Mathematical Simulation. J. Appl. Phys. 78(11): 6427-6431.
  2. CHOI, S. W., LUCOVSKY, G., BACHMANN, K. J. 1992. Remote Plasma Enhanced Chemical Vapor Deposition of GaP with in situ Generation of Phosphine Precursors. J. Vac. Sci. Technol. B10(3): 1070-1073.
  3. CHRISTOPHOROU, L. G., 1971. Atomic and Molecular Radiation Physics. Wiley, New York.
  4. DELCROIX, J. L., 1960. Introduction to the Theory of Ionized Gases. Wiley , New York.
  5. DENPOH, K., NANBU, K. 2000. Self Consistent Particle Simulation of Radio Frequency CF4 Discharge: Effect of Gas Pessure. Jpn. J. Appl. Phys. 39(Part. 1., 5B): 2804-2808.
  6. FRANKLIN, R. N. 1999. The Fluid Model of the Positive Column of a Discharge with Negative Ions at Low Pressure Joining Plasma and Sheath. J. Phys. D: appl. Phys. 32: L71-L74.
  7. GARRIGUES, L., HERON, A., ADAM, J. C., BOEUF, J. P. 2000. Hybrid and particle in Cell Models of a Stationary Plasma Thruster. Plasma Sources Sci. Technol. 9: 219-226.
  8. GOGOLIDES, E. 1997. A Synthetic Approach to RF Plasma Modeling Verified by Experiments: Demonstration of a Predictive and Complete Plasma Simulator. Jpn. J. Appl. Phys. 36(Part. 1., 4B): 2435-2442.
  9. GUO, X. M., ZHOU, T. D., PAI, S. T., 1996. Experimental Study of Spatial Distribution of Ar Glow Discharge Plasma. Phys. Plasmas, 3(10): 3853-3857.
  10. HELIN, W., ZULI, L., DAMING, L. 1996. Monte Carlo Simulation for Electron Neutral Collision Processes in Normal and Abnormal Discharge Cathode Sheath Region. Vacuum. 47(9): 1065-1072.
  11. HUXLEY, L. G. H. and CROMPTON, R. W., 1974. The Diffusion and drift of Electrons in Gases. Wiley, New York.
  12. LOFFHAGEN, D., SIGENEGER, F., WINKLER, R. 2002. Study of the Electron Kinetics in the Anode Region of a Glow Discharge by a Multiterm Approach and Monte Carlo Simulations. J. Phys. D: Appl. Phys. 35: 1768-1776.
  13. NANBU, K. 2000. Probability Theory of Electron-Molecule, Ion-Molecule, Molecule-Molecule, and Coulomb Collisions for Particle Modeling of Materials Processing Plasmas and Gases. IEEE Trans. Plasma Science. 28(3): 971-990.
  14. SATO, A. H., LIEBERMAN, M. A., 1990. Electron-Beam Probe Measurement of Electric Fields in rf Discharges. J. Appl. Phys., 68(12): 6117-6124.
  15. SETTAOUTI, A., MIMOUNI, A., 1999. Monte Carlo Simulation of Electron Swarms in SF6 in Uniform Electric Fields. The Third International Conference on Computational Aspects and Their Applications in Electrical Engineering, ''CATAEE'99''. October 19-20, 1999, Philadelphia University, Jordan.
  16. SETTAOUTI, A., AOUABDI, L., 2001. Monte Carlo Simulation of Electron Swarms in Nitrogen in Uniform Electric Field. 4th Jordanian International Electric & Electronics Engineering Conference (JIEEEC'2001), April 16-18, 2001, Amman, Jordan.
  17. VOSSEN, J. L., KERN, W.,1978. Thin Film Processes. Academic Press. INC. San Diego (USA).
  18. WANG, D. Z., DONG, J. Q. 1997. Kinetics of low pressure rf discharges with dust particles. J. Appl. Phys. 81(9): 38-42.
  19. YONEMURA, S., NANBU, K. 2001. Electron Energy Distribution in Inductively Coupled Plasma of Argon. Jpn. J. Appl. Phys. 40(Part. 1, 12): 7052-7060.