Main Article Content

Abstract

This paper deals with boundary feedback stabilization of a system, which consists of a wave equation in a bounded domain of , with Neumann boundary conditions. To stabilize the system, we propose a boundary feedback law involving only a damping term. Then using a new energy function, we show that the solutions of the system asymptotically converge to a stationary position, which depends on the initial data. Similar results were announced without proof in (Chentouf and Boudellioua, 2004).

 

 

Keywords

Wave equation Neumann condition boundary damping control energy function asymptotic behavior.

Article Details

References

  1. ADAMS, R.A. 1975. Sobolev spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York-London.
  2. BARDOS, C., LEBAU, G., and RAUCH, J. 1992. Sharp sufficient conditions for the observation, controllability and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5): 1024-1064.
  3. BREZIS, H. 1992. Analyse Fonctionnelle, Théorie et Applications. Paris: Masson.
  4. CHEN, G. 1979a. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl., 58: 249-274.
  5. CHEN, G. 1979b. Control and stabilization for the wave equation in a bounded domain. Part I, SIAM J. Control Optim. 17: 66-81.
  6. CHEN, G. 1981a. Control and stabilization for the wave equation in a bounded domain. Part II, SIAM J. Control Optim., 19: 114-122.
  7. CHEN, G. 1981b. A note on boundary stabilization of the wave equations. SIAM J. Control Optim., 19: 106-113.
  8. CHENTOUF, B. and BOUDELLIOUA, M.S. 2004. On the stabilization of the wave equation with dynamical control. In: Proc. 16th International Symposium on Mathematical Theory of Networks and Systems, 2004, Leuven, Belgium, 6 pages.
  9. CONRAD, F., O'DOWD, G. and SAOURI, F.Z. 2002. Asymptotic behaviour for a model of flexible cable with tip masses. Asymptot. Anal., 30: 313-330.
  10. HARAUX, A. 1991. Systèmes Dynamiques Dissipatifs et Applications. Paris.
  11. JOHN, F. 1982. Partial Differential Equations. (2nd Edition) Springer-Verlag.
  12. KATO, T. 1976. Perturbation theory of linear Operators. Springer-Verlag.
  13. KOMORNIK, V. 1994. Exact Controllability and Stabilization. The Multiplier Method. Masson, Paris.
  14. LAX, P.D, MORAWETZ, C.S, and PHILIPS, R.S. 1993. Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle. Comm. Pure Appl. Math., 65: 447-486.
  15. LAGNESE, J. 1983. Decay of solutions of the wave equation in a bounded region with boundary dissipation. J. Diff. Equ., 50: 163-182.
  16. LAGNESE, J. 1988. Note on boundary stabilization of wave equations. SIAM J. Control Optim., 26(5): 1250-1256.
  17. LIONS, J.L. 1988a. Exact controllability, stabilization and perturbations for distributed systems. SIAM Review, 30(1): 1-68.
  18. LIONS, J.L. 1988b. Contrôlabilité exacte et stabilisation de systèmes distribués. 1, Masson, Paris.
  19. MAJDA, A. 1975. Disappearing solutions for the dissipative wave equations. Indiana Univ. Math. J., 24:
  20. -1133.
  21. MIKHAÏLOV, V. 1980. Equations aux dérivées partielles. Mir, Moscou 1980.
  22. MORAWETZ, C.S. 1975. Decay of solutions of the exterior problem for the wave equations. Comm. Pure Appl. Math., 28: 229-264.
  23. PAZY, A. 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York.
  24. QUINN, J.P., and RUSSELL, D.L. 1977. Asymptotic stability and energy decay rate for solutions of hyperbolic equations with boundary damping. Proc. Roy. Soc. Edinburgh. 77: 97-127.
  25. RAUCH, J., and TAYLOR, M. 1974. Exponential decay of solutions to hyperbolic equations in bounded domain. Indiana. Univ. Math. J., 24(1): 79-86.
  26. RUSSELL, D.L. 1978. Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Review, 20(4): 639-739.
  27. TRIGGIANI, R. 1989. Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Math. Anal. Appli., 137: 438-461.