Main Article Content

Abstract

Primary and secondary multiphase mineral inclusions, without preserved fluid are found in ferrikaersutite megacrysts from the Cenozoic Harrat Ash Sham Volcanic Field in  ٍSyria. Mineral phases in the inclusions are magnetite, hematite, pseudobrookite and pyrrhotite. The kaersutite megacrysts formed from a hydrous basanitic melt at depth. Silicate minerals in the inclusions are olivine, plagioclase, phlogopite, hornblende, clino- and orthopyroxene. These silicate minerals crystallized from melt penetration and infillings of veins and fractures in the kaersutite. Magnetite and pyrrhotite inclusion formed through magmatic crystallization which was followed by low temperature alteration and re-equilibration. Late stage  near-surface alteration resulted in the formation of hematite,  limonite  and fine-grained weathering products  which comprise high-Fe-Si-,  Si-Mg-Al-,  Si-Fe-Al-,  Si-Al- and Si-Ti-Al-Fe-Ca-rich alterations. The composition of these late stage alteration products was governed by low-temperature post-magmatic alteration of kaersutite along cleavage planes and fractures. 

 

 

Keywords

Harrat Ash Sham Inclusion Kaersutite megacryst Sulphide Iron oxides Alteration.

Article Details

References

  1. AL-MISHWAT, A., NASIR, S. 2003. Composition of the lower crust of the Arabian Plate: a xenolith perspective. Lithos, 72: 45-72.
  2. ALTHERR, R., HENJES-KUNST, F. and BAUMANN, A. 1990. Asthenosphere versus lithosphere as possible sources for basaltic magmas erupted during formation of the Red Sea: constraints from Sr, Rb and Nd isotopes. Earth Plant. Sci. Lett. 96: 269-286.
  3. ANDERSEN, T., NEUMAN, E.R. 2001. Fluid inclusions in mantle xenoliths. Lithos 55: 299-318.
  4. ANDERSEN, T., GRIFFIN, W.L. and O’REILLY, S.Y. 1987. Primary sulfide melt inclusions in mantle-derived megacrysts and pyroxenites. Lithos, 20:279-294.
  5. BOETTCHER, A, L. and O'NEIL, J.R. 1980. Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am. Jour. Sci., 280(A): 594-621.
  6. CAMP, V.E. and ROOBOL, M.J. 1992. The Arabian continental alkali basalt province: part III. Evolution of the Harrat Kishb, Kingdom of Saudi Arabia. Geol. Soc. Amer. Bull. 104: 379-396.
  7. CHURIKOVA, T., WÖRNER, G., MIRONOV, N. and KRONZ, A. 2007. Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib. Mineral. Petrol. 154: 217-239.
  8. DWAIRI, I.M. 1998. Evaluation of Jordanian zeolite tuff as a controlled slow-release fertilizer for NH4. Envir. Geol. 34:1-4.
  9. ERNST, W,G, and LIU, J. 1998. Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB: A semiquantitative thermobarometer. Am. Min. 83: 952-969.
  10. FREZZOTTI, M.L. 2001. Silicate-melt inclusions in magmatic rocks: application to petrology. Lithos 55: 273-299.
  11. GUTMANN, J.T. 1974. Tubular voids within labradorite phenocrysts from Sonora, Mexico. Am. Mineral. 59: 666-672.
  12. HALTER, W.E, HEINRICH, C.A. and PETTKE, T. 2004a. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex I: analytical approach and data evaluation. Contrib. Mineral Petrol. 147: 385-396.
  13. HALTER, W.E, HEINRICH, C.A. and PETTKE, T. 2004b. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution. Contrib. Mineral. Petrol. 147: 397-412.
  14. HENJES-KUNST, F., ALTHERR, R. and BAUMANN, A. 1990. Evolution and composition of the lithospheric mantle underneath the western Arabian Peninsula: constraints from Sr-Nd isotope systematics of mantle xenoliths. Contrib. Mineral. Petrol. 105: 406-427.
  15. HONGFU, Z., NAKAMURA, E., JIN, Z. and AKIRA, I. 2006. Glass melt inclusion in clinopyroxene from Linqu Cenozoic basalt, Shandong Province, China. Chinese Sci. Bull. 21: 1869-1876.
  16. HOPS, J.J., GURNEY, J.J. and WINTERBURN, P. 1992. Megacrysts and high temperature nodules from the Jagersfontein kimberlite pipe. Geol. Soc. Aust. 14: 759-770.
  17. HURAI, V., SIMON, K., WIECHERT, U., HOEFS, J., KONECNY, P., HURAIVOA, M., PIRONON, J. and LIPKA, J. 1998. Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalts: P-T-conditions and two-liquid elemental partitioning. Contrib. Mineral. Petrol. 133: 12-29.
  18. IBRAHIM, K., and HALL, A. 2004. The authigenic zeolites of the Aritayn Volcaniclastic Formation, north-east Jordan. Mineral Deposita 31: 514-522.
  19. ILANI, S., HARLAVAN, Y., TARAWNEH, K., RABBA, I., WEINBERGER. R., IBRAHIM, K., PELZ, S. and STEINITZ, G. 2001. New K-Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: implications for the span and duration of the upper mantle upwelling beneath the western Arabian plate. Geology, 29: 171-174.
  20. IONOV, D.A., GRIFFIN, W.L. and O’REILLY, S.Y. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol. 141: 153-184.
  21. KRIENITZ, M-S., HAASE, KM., MEZGER, K., ECKARDT, V. and SHAIKH-MASHAIL, M.A. 2006. Magma genesis and crustal contamination of continental intraplate lavas in northwest Syria. Contrib. Mineral. Petrol. 151: 698-716.
  22. KULLERUD, G., YUND, R.A. and MOH, G. 1969. Phase relations in the Cu – Fe – S and Cu – Ni – S systems. Pp. 323-343 in: Magmatic Ore Deposits (HDB Wilson Editor) Econ. Geol. Monogr. 4: 323-343.
  23. LAROCQUE, A.C.L., STIMAC, J., KEIT, J.D. and HUMINICKY, M.A. 2000. Evidence for open- system behavior in immiscible Fe-S-O-liquids in silicate magmas: implications for contributions of metals and sulfur to ore-forming fluids. Canad. Mineral. 38: 233-1249.
  24. LAUBIER, M., SCHIANO, P., DOUCELANCE, R., OTTOLINI, L. and LAPORTE, D. 2007. Olivine- hosted melt inclusions and melting processes beneath the FAMOUS zone (Mid-Atlantic Ridge). Chem. Geol. 240: 129-150.
  25. LEAKE, BE and many others. 1997. Nomenclature of amphiboles: Report of the subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Min. Mag. 61: 295-321.
  26. LUSTRINO, M. and SHARKOV, E. 2006. Neogene volcanic activity of western Syria and its relationship with Arabian plate kinematics. J Geol 42: 115-139.
  27. MORIMOTO, N. and many others. 1988. Nomenclature of pyroxene. Schweiz Mineral Petrog Mitt 68: 95-111.
  28. MOUTY, M., DELALOYE, M., FONTIGNIE, D., PISKIN, O. and WAGNER, J.J. 1992. The volcanic activity in Syria and Lebanon between Jurassic and Actual. Schweiz Mineral. Petrogr. Mitt. 72: 91-105.
  29. NASIR, S. 1992. The lithosphere beneath the northwestern part of the Arabian plate (Jordan): evidence from xenoliths and geophysics. Tectonophysics, 201: 357-370.
  30. NASIR, S. 1994. Geochemistry and petrogenesis of Cenozoic volcanic rocks from the northwestern part of the Arabian ontinental alkali basalt province (Jordan). African. Geosci . Rev. 1: 455-467.
  31. NASIR, S. 1995. Cr-poor megacrysts from the Ash Sham volcanic field northwestern part of the Arabian plate. J. Afr. Earth Sci. 21: 349-357.
  32. NASIR, S. and MAHMOOD, S. 1991. Oxidation of olivine in lherzolitic xenoliths from NE- Jordan Mu’tah J Research & Studies 6: 171-182.
  33. NASIR, S. and SAFARJALANI, A. 2000. Lithospheric petrology beneath the northern part of the Arabian plate in Syria: evidence from xenoliths in alkali basalts. J Afr Earth Sci 30: 149-168.
  34. NASIR, S, AL-RAWAS, A. 2006. Mössbauer characterization of upper mantle ferrikaersutite. Amer. Mineral. 91: 1163-1193.
  35. NASIR, S., ABU-ALJARAYESH, I., MAHMOOD, S. and LEHLOOH, A. 1992. Oxidation state of the upper mantle beneath the northwestern part of the Arabian lithosphere Tectonophysics, 213: 359-366.
  36. OBA, T. 1997. The stability fields of kaersutite and its substitution of R2+ + 2Si = Ti + 2AlIV. Pp. 126-138 in Synthetic and natural rock systems (AKGupta, K Onuma, M Arima eds) Allied Publishers Ltd, Kolkata, India. SHAW, J.E, BAKER, J.A,
  37. KENT, A.J.R., IBRAHIM, K.M. and MENZIES, M.A. 2007. The geochemistry of the Arabian lithospheric mantle – a source for intraplate volcanism. J. Petrol. 48: 1495-1512.
  38. STIMAC, J.A. and HICKMOTT, D. 1996. Ore partitioning in intermediate- to silicic magmas: PIXE results on natural mineral/melt assemblages. Pp. 197-235 in: Giant Ore Deposits II: Controls on the Scale of Orogenic Magmatic-Hydrothermal Mineralization Proceeding A.H. Clark editor) Second Giant Ore Deposits Workshop (Kingston 1995).
  39. TÖRÖK, K., BALI, E., SZABÓ, C. and SZAKAL, A. 2003. Sr-barite droplets associated with sulfide blebs in clinopyroxene megacrysts from basaltic tuff (Szentbekkalla: western Hungary). Lithos, 66: 275-289.
  40. WALLACE ,C. 1977. Anorthoclase-calcite rodding within kaersutite xenocryst from the Kakanui mineral breccia, New Zealand. Am. Mineral. 62: 1038-1041.
  41. ZAJACZ, Z., and SZABÓ, C. 2003. Origin of sulfide inclusions in cumulate xenoliths from Nograd-Goِmoِr volcanic field Pannonian Basin (north Hungary/south Slovakia). Chem. Geol. 194: 105-117.