Main Article Content

Abstract

In this paper we investigate convective heat transfer characteristics of steady hydromagnetic slip flow over a porous rotating disk taken into account the temperature dependent density, viscosity and thermal conductivity  in the presence of  Hall current, viscous dissipation and Joule heating. Using von-Karman similarity transformations we reduce the governing equations for flow and heat transfer into a system of ordinary differential equations which are highly nonlinear and coupled. The resulting nondimensional equations are solved numerically by applying Nachtsheim-Swigert iteration technique. The results show that when modeling a thermal boundary layer, with temperature dependent fluid properties, consideration of Prandtl number as constant within the boundary layer, produces unrealistic results.   therefore  Therefore it must be treated as variable throughout the boundary layer. Results also show that the slip factor significantly controls the flow and heat transfer characteristics.

 

 

Keywords

Rotating disk Heat transfer Convection Slip flow Variable Properties.

Article Details

References

Read More