Main Article Content


We give a formula for the number of spanning trees in a chain of cycles that have connected intersection of one edge but where the cycles have variable sizes. The formula uses basic properties of continued fractions.



Spanning trees Arboricity and Continued fractions

Article Details


  1. BIER, T. 1995. Eine Charakterisierung zyklischer Polytope durch Kettenbrüche, Archiv der Mathematik 16: 545-554.
  2. BOGDANOWICZ, Z.R. 2008. Formulas for the number of spanning trees in a fan, Applied Mathematical Sciences 2: 781-786, Hikari Ltd.
  3. HASHIMOTO, K. 1989. Zeta Functions of finite graphs and representations of p-adic groups, Advanced Study in Pure Mathematics, vol 15, Academic Press NY pp. 211-280.
  4. IHARA, Y. 1966. On discrete Subgroups of the two by two projective linear group over p-adic fields, J. Math Soc Japan 18: 219-235.
  5. NORTHSHIELD, S. 1994. Several Proofs of Ihara's theorem, IMA preprint series No 1459.
  6. SEDLACEK, J. 1970. Lucas Numbers in Graph Theory, In Mathematics (Geometry and Graph Theory) Univ. Karlova, Prague p. 111-115.
  7. STARK, H. and TERRAS, A. 1995. Zeta functions of finite Graphs and Coverings, MSRI Preprint No 074-95.