Micellar Enhanced Ultrafiltration for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) Mixtures in Underground Contaminated Water in Oman

Mohamed Aoudia, Amal Al-Sabahi, Salma Al-Kindy, Mahfoodh Al-Sheily, Fouzul Marikar

Abstract


In an attempt to analyze polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated underground water in Oman (Rustaq), Gas chromatography-Mass spectrometry was first used to determine the different concentrations in a standard mixture containing 16 PAHs. Retention time and calibration curves were obtained for all aromatic compounds and were used to identify a given analyte as well as its concentration in the contaminated underground water. Micellar enhanced ultrafiltration (MEUF) was then used to treat standard aqueous solution of PAHs at low concentration (~ 1 ppb) using an edible nonionic surfactant (Tween 80). The totality of the mixture components was completely rejected. Within the experimental detection limit (± 0.01 ppb), the residual PAH concentrations were less than 0.01 ppb in accord with the allowed concentrations in drinking water. Likewise, excellent rejections of PAHs in MEUF treatment of diesel contaminated underground water at an Omani site (Rustaq) were observed. The concentration of PAHs was reduced to less than 0.01 ppb, the accepted limit for the most toxic member of the PAH group (benzo(a)pyrene).

 

 


Keywords


Surfactant; Micelle; Enhanced ultrafiltration; Rejection; Retention time.

Full Text:

PDF

References


AOUDIA, M., ALLAL, N., DJENNET, H., TOUMI, L., 2003. Dynamic Micellar Enhanced Ultrafiltration: Use of Anionic (SDS)-nonionic (NPE) System to Remove Cr3+ at Low Surfactant Concentration, J. Membr. Sci, 217: 181-192.

AOUDIA, M., Al-SHAAILI. M., 2006. Solubilization of Naphthalene and Pyrene by Sodium Dodecyl Sulfate (SDS) and Polyoxyethylenesorbitan Monooleate (Tween 80) Mixed Micelles, Colloids and Surfaces A: Physicochem. Eng. Aspects, 287: 44-50.

AOUDIA, M., AL-HADDABI, B., AL-HARTHI, Z., AL-RUBKHI, A., 2010. Sodium Lauryl Ether Sulfate Micellization and Water Solubility Towards Naphthalene and Pyrene: Effect of the Degree of Ethoxylation, J. Surfact Detergtg, 13: 103-111.

BAEK, K., YANG, J.W., 2004. Simultaneous Removal of Chlorinated Aromatic Hydrocarbons, Nitrate and Chromate Using Miceller-Enhanced Ultrafiltration, Chemosphere, 57: 1091-1097.

BIELSKA, M., SZYMANOWSKI, J., 2004. Micellar Enhanced Ultrafiltration of Nitrobenzene and 4-Nitrophenol, J. Membr. Sci, 243: 273-281.

CHAIKO, M.A., NAGARAKJAN, R., RUCKENSTEIN, E., 1984. Solubilization of Single Components and Binary Mixtures of Hydrocarbons in Aqueous Micellar Solutions, J. Colloid Interface Sci, 99: 168-182.

DOUNG, R.A., LEI, W.G., CHEN, T.F., LEE, C.Y., CHEN, J.H., CHANG, W.H., 1996. Effects of Anionic Surfactants on Sorption and Micellar Solubilization of Monoaromatic Compounds. Wat. Sci. Tech, 34: 327-334.

DUNN, R.O., SCAMEHORN, J.F., CHRISTIAN, S.D., 1985. Use of Micellar Enhanced Ultrafiltration to Remove Dissolved Organics from Aqueous Streams, Separ. Sci. Technol. 20: 257.

DUNN, R.O., SCAMEHORN, J.F., CHRISTIAN, S.D., 1987. Concentration Polarization Effects in the Use of Micellar Enhanced Ultrafiltration to Remove Dissolved Organic Pollutants From Waste Water, Separ. Sci. Technol. 22: 763.

EDWARDS, D.A., LUTHY, R.G., LIU, Z., 1991. Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solutions, Environ. Sci. Technol, 25: 127.

FILLIPI, B.R., BRANT, L.W., SCAMEHORN, J.F., CHRISTIAN, S.D., 1999. Use of Micellar-Enhanced Ultrafiltration at Low Surfactant Concentrations and with Anionic-Nomionic Surfactant Mixtures, J. Colloid Interface Sci, 213: 68-80.

GUHA, S., JAFFE, P.R., PETERS, C.A., 1998. Solubilization of PAH Mixtures by a Nonionic Surfactant, Environ. Sci. Technol, 32: 930-945.

HILL, A., GHOSHAP, S. 2002. Micellar Solubilization of Naphyhalene and Phenanthrene fron Nonaqueous-Phase Liquids, Environ. Sci. Tehnol. 36: 3901-3907.

HONG, J.J., YANG, S.M., 1994. Continuous Separation of Phenol from Aqueous Stream Using Micellar Enhanced Ultrafiltration (MEUF), J. Chem. Eng. Japan, 2 (3): 314.

JACOBSON, A.M., CASSASSA, E.Z., 1991. Multicomponent Solubilization in Aqueous Micelles of Dodecyl- and Tetradecyltriammonium Bromide: Solubilization equilibria, J Colloid Interface Sci, 142: 480-488.

JADHAV, S.R., VERMA, N., SHARMA, A., BHATTACHARAYA, P.K., 2001. Flux and Retention Analysis During Micellar Ultrafiltration for the Removal of Phenol and Aniline, Separation and Purification Technology, 24: 541-557.

JACHOWSKA, M., ADAMEZAK, H., SZYMANOWSKI, J., 2002. Ultrafiltration Characteristics of Oxyethylated Methyl Dodecanoate Aqueous Solutions, Colloids Surf, 186: 11.

KIM, C.K., KIM, S.S., LIM, J.C., 1998. Removal of Aromatic Compounds in Aqueous Solutions via Micellar Enhanced Ultrafiltration: Part 1. Behavior of Nonionic Surfactants, J. Membrane. Sci, 147: 13.

KHANDORI, K., SCHECHTER, R.S., 1990. Selection of Surfactants for Micellar-enhanced Ultrafiltration, Separ. Sci. Technol, 25 (1&2): 83.

NAGARAKJAN, R., CHAIKO, M.A., RUCKENSTEIN, E., 1984. Locus of Solubilization of Benzene in Surfactant Micelles, Journal of Physical Chemistry, 88: 2916-2922.

PRAK, D.J.L., PRITCHARD, P/H., 2002. Solubilization of Polycyclic Aromatic Hydrocarbons Mixtures in Micellar Nonionic Surfactant Solutions. Water Research, 36: 3463-3472.

PURKAIT, M.K., DASKUPTA, S., DE, S., 2005. Micellar Enhanced Ultrafiltration of Phenolic Derivatives from their Mixtures, J Colloid Interface Sci, 285: 395-402.

SHICK, M (Editor), Nonionic Surfactants, Dekker, New York (1967), p. 644.

SYAMAL, M.D., BHATTACHARYA, P.K. 1997. Phenol Solubilization by Cetyl Pyridinium Chloride Micelles in Micellar Enhanced Ultrafiltration, J. Membr. Sci, 137: 99.

TALENS-ALESSON, F.I., URBANSKI, R., SZYMANOWSKI, J., 2001. Evolution of Resistance to Permeation During Micellar Enhanced Ultrafiltration of Phenol and Aniline, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178: 71-77.

UNDERWOOD, J.L., DEBELAK, K.A., WILSON, D.J., MEREAS, J.M., 1986. Soil Clean up by In-situ Surfactant Flushing. V. Micellar Solubilization of some Aromatic Compounds. Separ. Sci. Technol, 28: 1527-1537.

VOLKERING, F., BREURE, A.M., ANDREI, J.G.A., RULKENS, W.H., 1995. Influence of Nonionic Surfactants on Bioavailability and Biodegradation of Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol, 6: 1699-1705.

WITEK, A., KO, A., KURCZEWSKI, B., RADZEJOWSKA, M., and HATALSKI, M., 2006. Simultaneous Removal of Phenols and Cr3+ using Micellar-enhanced Ultrafiltration Process, Desalination, 191: 111-116.

ZHAO, B., ZHU, L., Li, W., CHEN, B., 2005. Solubilization and Biodegradation of Phenanthrene in Mixed Anionic-nonionic Surfactant Solutions, Chemosphere, 58: 33-40.

ZHU, L., FENG, S., 2003. Synergistic Solubilization of Polycyclic Aromatic Hyderocarbons by Mixed Anionic-Nonionic Surfactants, Chemosphere, 53: 459-467.




DOI: http://dx.doi.org/10.24200/squjs.vol16iss0pp13-23

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Mohamed Aoudia, Amal Al-Sabahi, Salma Al-Kindy, Mahfoodh Al-Sheily, Fouzul Marikar

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

SQUJS 2017-CC BY-ND

This journal and its content is licensed under a Attribution-NoDerivatives 4.0 International.

Flag Counter