Twelfth Grade Kuwaiti Students’ Identification of Domain and Range in Graphical Representation of Function and the Meaning they Ascribe to them

Amal H. Alajmi

Abstract


This research investigated twelfth grade students' performance in identification of domain and range of functions in a graphical representation. The study focused on four types of functions: polynomial, trigonometry, piecewise and discontinuous. The study also aimed to identify the meaning that students gave for the domain and range and how they identified them. To collect the data two instruments were used: a test and an interview. A sample of 216 students participated in the study. The results showed a low performance in identifying domain and range for functions in graphical representation. The T-test indicated a statistical difference in students’ performance in domain and range in favor of domain. The results indicated a statistically significant difference in students' performance among the different types of function. Tukey test showed that the difference was in favor of polynomial against the other types of function. Also there was a significant difference between trigonometry and piecewise items in favor of trigonometry. The interviews revealed that students’ meaning and common practices in identifying the domain and range reflected misunderstandings. Some of them highlighted that the domain is the x-axis and y-axis or the x-intercept and y- intercept. Others considered that the curve as the domain or the range.

Keywords


Algebra, high school level, function, mathematics, graphical representation.

Full Text:

PDF

References


التربية الكويت: جاهزون لاستقبال الطلبة لأداء اختبارات الفترة الدراسية الأولى (10، ديسمبر، 2018). تاريخ الاسترجاع10

مايو2019 من :

https://www.kuna.net.kw/ArticleDetails.aspx?id=2763787

النذير، محمد بن عبدالله بن عثمان، (2015). مستوى تمكن الطلاب المستجدين بجامعة الملك سعود من المعرفة في الرياضيات الجامعية الأساسية ومستوياتها." مجلة تربويات الرياضيات: الجمعية المصرية لتربويات الرياضيات مج18، ع3: 110 - 139.

سلامة، عبدالله السيد عزب، (2002). استخدام المدخل البصري في تدريس الدوال الحقيقية وأثره على تخفيض قلق الرياضيات والتحصيل لدى طلاب التعليم الثانوي القسم العلمي: دراسة تجريبية. في المؤتمر العلمي السنوي الثاني - البحث في تربويات الرياضيات: الجمعية المصرية لتربويات الرياضيات القاهرة: الجمعية المصرية لتربويات الرياضيات: 258-371.

محمد، إيهاب السيد شحاتة، (2014). "تصور علاجي مقترح قائم على مهارات التواصل الرياضي لعلاج صعوبات تعلم الدوال المثلثية لدى طلاب المرحلة الثانوية". المجلة التربوية: جامعة سوهاج - كلية التربية. ج36: 39 - 103.

Abdullah, S. A. S. (2010). Comprehending the concept of functions. Procedia-Social and Behavioral Sciences, 8, 281-287.

‏Aziz, T. A., & Kurniasih, M. D. (2019). External Representation Flexibility of Domain and Range of Function. Journal on Mathematics Education, 10(1), 143-156.‏

Berg, C. A., & Smith, P. (1994). Assessing students' abilities to construct and interpret line graphs: Disparities between multiple‐choice and free‐response instruments. Science Education, 78(6), 527-554.‏

Bittinger, M. L., Ellenbogen, D. J., & Johnson, B. L. (2010). Elementary and intermediate algebra: graphs and models (4th ed.). Boston: Addison Wesley.

Carlson, M., & Oehrtman, M. (2005). Key aspects of knowing and learning the concept of function. Research Sampler Series, 9, The Mathematical Association of America Notes Online. http://www.maa.org/t_and_l/sampler/rs_9.html

Cho, Y. D. (2013). College Students’ Understanding of the Domain and Range of Functions on Graphs. Buffalo: State University of New York at Buffalo.

Cho, P., & Moore-Russo, D. (2014). How students come to understand the domain and range for the graphs of functions. Proceedings of the Joint Meeting of the PME 38 and PME-NA 36 (Vol. 2, pp. 281–288). Vancouver: International Group for the Psychology of Mathematics Education.

Cho, P., Norris, B., & Moore-Russo, D. (2017). A study of common student practices for determining the domain and range of graphs. Investigations in Mathematics Learning, 9(4), 202-219.

Dubinsky, E., & Wilson, R. T. (2013). High school students’ understanding of the function concept. The Journal of Mathematical Behavior, 32(1), 83-101.‏

Eisenberg, T. (1992). On the development of a sense for functions. In E. Dubinsky & G. Harel (Eds.), The concept of function. Aspects of epistemology and pedagogy (pp. 153-174). The Mathematical Association of America.

Even, R. (1998). Factors involved in linking representations of functions. The Journal of Mathematical Behavior, 17(1), 105-121.

Herman, M. (2007). What students choose to do and have to say about use of multiple representations in college algebra. Journal of Computers in Mathematics and Science Teaching, 26(1), 27-54.

Kalchman, M., & Case, R. (1998). Teaching mathematical functions in primary and middle school: An approach based on neo-Piagetian theory. Sciatica pedagogical experimentalism, 35(1), 7-54.‏

Knuth, E. J. (2000a). Understanding connections between equations and graphs. The Mathematics Teacher, 93(1), 48-53.

Knuth, E. J. (2000b). Student understanding of the Cartesian Connection: An exploratory study. Journal of Research in Mathematics Education, 31(4), 500-508.

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of educational research, 60(1), 1-64.‏

Mudaly, V., & Rampersad, R. (2010). The role of visualization in learners' conceptual understanding of graphical functional relationships. African Journal of Research in Mathematics, Science and Technology Education, 14(1), 36-48.‏

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

Özkan, E. M., & Ünal, H. (2009). Misconception in Calculus-I: Engineering students’ misconceptions

in the process of finding domain of functions. Procedia-Social and Behavioral Sciences, 1(1), 1792-1796.‏

Pesek, D. D., & Kirshner, D. (2000). Interference of instrumental instruction in subsequent relational learning. Journal for Research in Mathematics Education 31(5), 524-540.

Selden, A., & Selden, J. (1992). Research perspectives on conceptions of function: Summary and overview. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 1–16). Washington, DC: Mathematical Association of America.

Tall, D. & Bakar, M. (1991). Students’ mental prototypes for functions and graphs. In Proceedings of

the conference of the international group for the psychology of mathematics education (pp. 104-111). Assisi: PME.

Van Dyke, F. & White, A. (2004). Examining students’ reluctance to use graphs. The Mathematics Teacher, 98(2), 110-117.




DOI: http://dx.doi.org/10.24200/jeps.vol13iss3pp576-591

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 Amal H. Alajmi

JEPS 2017-CC BY-ND

This journal and its content is licensed under a Attribution-NoDerivatives 4.0 International.

Flag Counter